940 resultados para drugmetabolism in old age, pharmacokinetiks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamics of the Pacific Plate is recorded in the systematic variation of location and the 40Ar-39Ar age of seamounts in the Western Pacific from 120 to 65 Ma ago. The seamounts are grouped into three linear zones as long as 5000 km. The seamounts become younger in the southeastern direction along the strike of these zones. Correlation between age and location of seamounts allows to divide the history of their formation into three stages. Rate of seamount growth was relatively low (2-4 cm/yr) during the first and the third stages within intervals of 120-90 and 85-65 Ma, whereas during the second stage (90-85 Ma), the seamounts were growing very fast (80-100 cm/yr). In the midst of this stage, at ~87 Ma ago, magmatic activity increased abruptly. Dynamics of seamount building is in good agreement with (1) pulses in development of the Ontong Java, Manihiki, and Caribbean-Colombian oceanic plateaus; (2) age of spreading acceleration in the mid-Cretaceous; and (3) a short period when the Izanagi Plate ceased to exist and the Kula Plate was formed. Variation in seamounts' age and location are in consistence with the hypothesis of diffuse extension of the Pacific Plate in course of its motion with formation of impaired zones of decompression melting. Direction of extension (325°-340° NW) calculated from the strike of seamount zones is consistent with the path of the Pacific Plate (330° NW) in the Late Cretaceous. Immense perioceanic volcanic belts were formed at that time along the margin of the Asian continent. The Okhotsk-Chukchi Peninsula Belt extends at a right angle to the compression vector. Three stages of this belt's evolution are synchronous with the stages of seamount formation in the Pacific Plate. Delay in origination of the East Sikhote-Alin Volcanic Belt and its different orientation were caused by counterclockwise rotation of the vector of convergence of oceanic and continental plates in the mid-Cretaceous. At the same time, i.e. 95-85 Ma ago, volcanic activity embraced the entire continental margin and tin granites were emplaced everywhere in the Eastern Asia. This short episode (90+/-5 Ma) corresponds to the mid-Cretaceous maximum of compression of the continental margin, and its age fits well a culmination in extension of the Pacific Plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this preliminary biometric study of the calcareous nannofossil species Chiasmolithus expansus, Chiasmolithus oamaruensis, and Chiasmolithus altus from the upper middle Eocene to lower Oligocene of Sites 647 and 748, we document a complete gradation of forms among all three species. Chiasmolithus oamaruensis has significantly higher morphologic variance than the other species. The Chiasmolithus population at each site changes from C. expansus to C. oamaruensis and then to C. altus. This may not reflect a true evolutionary sequence because a major reversal in shape change of the central cross-bar structure accompanies this sequence, and because C. altus is morphologically closer to C. expansus than it is to C. oamaruensis. The change in the width of the cross-bar structure is primarily a result of changes in the alignment of the central connecting bar, rather than of changes in the cross-bar angle. At Site 748, two fluctuations in morphology produce sample populations intermediate between all three species. In addition, reported stratigraphic and paleogeographic occurrences of C. oamaruensis and C. altus show different latitudinal distributions. These morphological and distributional patterns may be explained by a continuous morphologic gradient between C. oamaruensis and C. altus, with C. oamaruensis occurring more commonly in cool-water paleoenvironments, and C. altus occurring more commonly in cold-water paleoenvironments. Thus, paleoenvironmental fluctuations at Site 748 may be the cause of the morphologic fluctuations in Chiasmolithus. This hypothesis can be tested against previously proposed evolutionary models by more detailed sampling of sections along a latitudinal transect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiolarian cherts in the Tethyan realm of Jurassic age were recently interpreted as resulting from high biosiliceous productivity along upwelling zones in subequatorial paleolatitudes the locations of which were confirmed by revised paleomagnetic estimates. However, the widespread occurrence of cherts in the Eocene suggests that cherts may not always be reliable proxies of latitude and upwelling zones. In a new survey of the global spatio-temporal distribution of Cenozoic cherts in Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) sediment cores, we found that cherts occur most frequently in the Paleocene and early Eocene, with a peak in occurrences at ~50 Ma that is coincident with the time of highest bottom water temperatures of the early Eocene climatic optimum (EECO) when the global ocean was presumably characterized by reduced upwelling efficiency and biosiliceous productivity. Cherts occur less commonly during the subsequent Eocene global cooling trend. Primary paleoclimatic factors rather than secondary diagenetic processes seem therefore to control chert formation. This timing of peak Eocene chert occurrence, which is supported by detailed stratigraphic correlations, contradicts currently accepted models that involve an initial loading of large amounts of dissolved silica from enhanced weathering and/or volcanism in a supposedly sluggish ocean of the EECO, followed during the subsequent middle Eocene global cooling by more vigorous oceanic circulation and consequent upwelling that made this silica reservoir available for enhanced biosilicification, with the formation of chert as a result of biosilica transformation during diagenesis. Instead, we suggest that basin-basin fractionation by deep-sea circulation could have raised the concentration of EECO dissolved silica especially in the North Atlantic, where an alternative mode of silica burial involving widespread direct precipitation and/or absorption of silica by clay minerals could have been operative in order to maintain balance between silica input and output during the upwelling-deficient conditions of the EECO. Cherts may therefore not always be proxies of biosiliceous productivity associated with latitudinally focused upwelling zones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulation rates for the five sites drilled during Leg 74 of the Glomar Challenger are presented on a common timescale based on calibration of datum levels to paleomagnetic records in Leg 74 sediments for the Paleogene, and a new compilation by Berggren et al. (1985), for the Neogene, and using the seafloor-spreading magnetic anomaly timescale of Kent (1985). We present data on accumulation of total sediment, of foraminifers, of the noncarbonate portion, and of fish teeth that give a history of productivity, winnowing, carbonate dissolution, and nonbiogenic input to what was then a part of the South Atlantic at about 30 deg S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hg distribution and some mineralogical-geochemical features of bottom sediments up to a depth of 10 m in the Deryugin Basin showed that the high and anomalous Hg contents in the Holocene deposits are confined to a spreading riftogenic structure and separate fluid vents within it. The accumulations of Hg in the the sediments were caused by its fluxes from gas and low-temperature hydrothermal vents under favorable oceanological conditions in the Holocene. The two mainly responsible for the high and anomalous Hg contents are infiltration (fluxes of hydrothermal or gas fluids from the sedimentary cover) and plume (Hg precipitation from water plumes with certain hydrochemical conditions forming above endogenous sources). The infiltration anomalies of Hg were revealed in the following environments: (1) near gas vents on the northeastern Sakhalin slope, where high Hg contents are associated only with Se and were caused by the accumulation of gases ascending from beneath the gas hydrate layer; (2) in the area of inferred occasionally operating low-temperature hydrothermal seeps in the central part of the Deryugin Basin, in which massive barite chimneys, hydrothermal Fe-Mn crusts, and anomalous contents of Mn, Ba, Zn, and Ni in sediments develop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty routinely used nannofossil datums in the late Neogene and Quaternary were identified at three Blake Ridge sites drilled during Leg 164. The quantitative investigation of the nannofossil assemblages in 236 samples selected from Hole 994C provide new biostratigraphic and paleoceanographic information. Although mostly overlooked previously, Umbilicosphaera aequiscutum is an abundant component of the late Neogene flora, and its last occurrence at ~2.3 Ma is a useful new biostratigraphic event. Small Gephyrocapsa evolved within the upper part of Subzone CN11a (~4.3 Ma), and after an initial acme, it temporarily disappeared for 400 k.y., between 2.9 and 2.5 Ma. Medium-sized Gephyrocapsa evolved in the latest Pliocene ~2.2 Ma), and after two short temporary disappearances, common specimens occurred continuously just above the Pliocene/Pleistocene boundary. The base of Subzone CN13b should be recognized as the beginning of the continuous occurrence of medium-sized (>4 µm) Gephyrocapsa. Stratigraphic variation in abundance of the very small placoliths and Florisphaera profunda alternated, indicating potential of the former as a proxy for the paleoproductivity. At this site, it is likely that upwelling took place during three time periods in the late Neogene (6.0-4.6 Ma, 2.3-2.1 Ma, and 2.0-1.8 Ma) and also in the early Pleistocene (1.4-0.9 Ma). Weak upwelling is also likely to have occurred intermittently through the late Pliocene. Due to the sharp and abrupt turnover of the nannofossils, which resulted from an evolution of very competitive species, the paleoproductivity of the late Pleistocene is not clear. The site was mostly in an oligotrophic central gyre setting during the 4.6- to 2.3-Ma interval, intermittently between 2.1 and 1.4 Ma, and continuously for the last several tens of thousand years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ~13,500 and ~8,900 cal. years BP and possibly during the 8,200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8°C during the Holocene Thermal Maximum (HTM) between ~8,900 and ~4,500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3,000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7,000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-amplitude, rapid climate fluctuations are common features of glacial times. The prominent changes in air temperature recorded in the Greenland ice cores (Dansgaard et al., 1993, doi:10.1038/339532a0; Grootes et al., 1993 doi:10.1038/366552a0) are coherent with shifts in the magnitude of the northward heat flux carried by the North Atlantic surface ocean (Bond et al., 1993, doi:10.1038/365143a0; Bond and Lotti, 1995, doi:10.1126/science.267.5200.1005); changes in the ocean's thermohaline circulation are a key component in many explanations of this climate flickering (Broecker, 1997, doi:10.1126/science.278.5343.1582). Here we use stable-isotope and other sedimentological data to reveal specific oceanic reorganizations during these rapid climate-change events. Deep water was generated more or less continuously in the Nordic Seas during the latter part of the last glacial period (60 to 10 thousand years ago), but by two different mechanisms. The deep-water formation occurred by convection in the open ocean during warmer periods (interstadials). But during colder phases (stadials), a freshening of the surface ocean reduced or stopped open-ocean convection, and deep-water formation was instead driven by brine-release during sea-ice freezing. These shifting magnitudes and modes nested within the overall continuity of deep-water formation were probably important for the structuring and rapidity of the prevailing climate changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous late Neogene planktonic foraminiferal records have been studied in the deep-sea cores of DSDP Sites 173, 310, and 296 across mid-latitudes of the North Pacific. These three sites have been correlated on the basis of planktonic foraminiferal events and major paleoclimatic/paleoceanographic intervals and tied to diatom, radiolarian, and nannofossil datum levels, and paleomagnetic and isotopic stratigraphy. Ten planktonic foraminiferal datum levels have been recognized within these Pliocene to Pleistocene sections; two of these are recognizable within the Pleistocene and eight within the Pliocene. Six planktonic foraminiferal zones are proposed which combined with the foraminiferal datum levels provide a high resolution biostratigraphic correlation for the mid-latitudes of the North Pacific.