937 resultados para differential expression genes
Resumo:
Hepatitis C virus (HCV) infections are the major cause of chronic liver disease, cirrhosis and hepatocellular carcinoma worldwide. Both spontaneous and treatment-induced clearance of HCV depend on genetic variation within the interferon-lambda locus, but until now no clear causal relationship has been established. Here we demonstrate that an amino-acid substitution in the IFNλ4 protein changing a proline at position 70 to a serine (P70S) substantially alters its antiviral activity. Patients harbouring the impaired IFNλ4-S70 variant display lower interferon-stimulated gene (ISG) expression levels, better treatment response rates and better spontaneous clearance rates, compared with patients coding for the fully active IFNλ4-P70 variant. Altogether, these data provide evidence supporting a role for the active IFNλ4 protein as the driver of high hepatic ISG expression as well as the cause of poor HCV clearance.
Resumo:
The adjustment of X-linked gene expression to the X chromosome copy number (dosage compensation [DC]) has been widely studied as a model of chromosome-wide gene regulation. In Caenorhabditis elegans, DC is achieved by twofold down-regulation of gene expression from both Xs in hermaphrodites. We show that in males, the single X chromosome interacts with nuclear pore proteins, while in hermaphrodites, the DC complex (DCC) impairs this interaction and alters X localization. Our results put forward a structural model of DC in which X-specific sequences locate the X chromosome in transcriptionally active domains in males, while the DCC prevents this in hermaphrodites.
Resumo:
AIM: Chemical decontamination increases the availability of bone grafts; however, it is unclear whether antiseptic processing changes the biological activity of bone. MATERIALS AND METHODS: Bone chips were incubated with 4 different antiseptic solutions including (1) povidone-iodine (0.5%), (2) chlorhexidine diguluconate (0.2%), (3) hydrogen peroxide (1%) and (4) sodium hypochlorite (0.25%). After 10 minutes of incubation, changes in the capacity of the bone-conditioned medium to modulate gene expression of gingival fibroblasts was investigated. RESULTS: Conditioned medium obtained from freshly prepared bone chips increased the expression of TGF-β target genes interleukin 11 (IL11), proteoglycan4 (PRG4), NADPH oxidase 4 (NOX4), and decreased the expression of adrenomedullin (ADM), and pentraxin 3 (PTX3) in gingival fibroblasts. Incubation of bone chips with 0.2% chlorhexidine, followed by vigorously washing resulted in a bone-conditioned medium with even higher expression of IL11, PRG4, and NOX4. These findings were also found with a decrease in cell viability and an activation of apoptosis signaling. Chlorhexidine alone, at low concentrations, increased IL11, PRG4 and NOX4 expression, independent of the TGF-β receptor I kinase activity. In contrast, 0.25% sodium hypochlorite almost entirely abolished the activity of bone-conditioned medium, while the other two antiseptic solutions, 1% hydrogen peroxide and 0.5% povidone-iodine, had relatively no impact, respectively. CONCLUSION: These in vitro findings demonstrate that incubation of bone chips with chlorhexidine differentially affects the activity of the respective bone-conditioned medium compared to the other antiseptic solutions. The data further suggest that the main effects are caused by chlorhexidine remaining in the bone-conditioned medium after repeated washing of the bone chips. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved. KEYWORDS: Autografts; TGF-β; antiseptic solution; bone; bone conditioned medium; bone supernatant; chlorhexidine; hydrogen peroxide; povidone-iodine; sodium hypochlorite
Resumo:
Erratum for Reduced IFNλ4 activity is associated with improved HCV clearance and reduced expression of interferon-stimulated genes. [Nat Commun. 2014]
Resumo:
The placenta is the site of synthesis of various peptide and steroid hormones related to pregnancy. Human placental lactogen (hPL) is the predominant peptide hormone secreted by term placenta and its synthesis is tissue-specific and coupled to placenta development. The objective of this work was to study the structure and expression of the hPL.^ Poly(A('+))RNA from human term placenta was translated in a mouse-derived cell-free system. A major band corresponding to pre-hPL and a minor band comigrating with mature hPL, represent (TURN)15% of the total radioactively labeled proteins. Analysis of the poly(A('+))RNA showed a prominent band at approximately 860 nucleotides. A corresponding band was observed in Northern blots of total RNA, hybridized with {('32)P}-labeled recombinant plasmid containing a portion of hPL cDNA. Similar analyses of nuclear RNA showed at least four additional bands at 990, 1200, 1460 and 1760 nucleotides, respectively, which are likely precursors of hPL mRNA. Poly(A('+))RNA was used to construct a cDNA library, of which approximately 5% of the clones were found to hybridize to hPL DNA sequences. Heteroduplexes constructed between a clone containing a 815 bp hPL cDNA insert and a hPL genomic DNA clone revealed four small intervening sequences which can account for the lengths observed in hnRNA molecules.^ Recombinant plasmid HCS-pBR322 containing a 550 bp insert of a cDNA transcript of human placental lactogen (hPL) mRNA was ('3)H-labeled an hybridized in situ to human chromosome preparations. These experiments allowed assignment of the hPL and growth hormone (hGH) genes, which have over 90% nucleotide homology in their coding sequences, to band q22-24 of chromosome 17. A gene copy number experiment showed that both genes are present in (TURN)3 copies per haploid genome.^ Experiments were designed to determine if all members of the hPL gene cluster, consisting of four non-allelic genes, are transcribed in term placenta. Advantage was taken of differences in restriction endonuclease sites in the coding portions of the different hPL genes, to distinguish the putative cDNAs of the transcriptionally active genes. Two genes were found to be represented in the cDNA library and their cDNA transcripts were isolated and characterized. Three independent methods showed that their corresponding mRNAs are about equally represented in the hPL mRNA population. The two cDNAs code for prehPL proteins which differ at a single amino acid position. However the secreted hPLs have identical amino acid sequences. A tetramer insertion duplication was found in a palindrome area of the 3' untranslated region of one of the hPL mRNAs. ^
Resumo:
Cattle are the species used most frequently for the development of assisted reproductive technologies, such as nuclear transfer. Cattle cloning can be performed by a large number of laboratories around the world, and the efficiency of nuclear transfer in cattle is the highest among all species in which successful cloning has been achieved. However, an understanding of the expression of imprinted genes in this important species is lacking. In the present study, real time reverse transcription polymerase chain reaction (RT-PCR) was utilized to quantify the expression of the bovine Igf2, Igf2r, and H19 genes in eight major organs (brain, bladder, heart, kidney, liver, lung, spleen, and thymus) of somatic cell cloned calves that died shortly after birth, in three tissues (skin, muscle, and liver) of healthy clones that survived to adulthood, and in corresponding tissues of control animals from natural reproduction. We found that, deceased bovine cloned calves exhibited abnormal expression of all three genes studied in various organs. Large variations in the expression levels of imprinted genes were also seen among these clones, which were produced from the same genetic donor. In surviving adult clones, however, the expression of these imprinted genes was largely normal, except for the expression of the Igf2 gene in muscle, which was highly variable. Our data showed disruptions of expression of imprinted genes in bovine clones, which is possibly due to incomplete reprogramming of donor cell nuclei during nuclear transfer, and these abnormalities may be associated with the high neonatal mortality in cloned animals; clones that survived to adulthood, however, are not only physically healthy but also relatively normal at the molecular level of those three imprinted genes.
Resumo:
The difficulty of detecting differential gene expression in microarray data has existed for many years. Several correction procedures try to avoid the family-wise error rate in multiple comparison process, including the Bonferroni and Sidak single-step p-value adjustments, Holm's step-down correction method, and Benjamini and Hochberg's false discovery rate (FDR) correction procedure. Each multiple comparison technique has its advantages and weaknesses. We studied each multiple comparison method through numerical studies (simulations) and applied the methods to the real exploratory DNA microarray data, which detect of molecular signatures in papillary thyroid cancer (PTC) patients. According to our results of simulation studies, Benjamini and Hochberg step-up FDR controlling procedure is the best process among these multiple comparison methods and we discovered 1277 potential biomarkers among 54675 probe sets after applying the Benjamini and Hochberg's method to PTC microarray data.^
Resumo:
This dissertation examines the biological functions and the regulation of expression of DNA ligase I by studying its expression under different conditions.^ The gene expression of DNA ligase I was induced two- to four-fold in S-phase lymphoblastoid cells but was decreased to 15% of control after administration of a DNA damaging agent, 4-nitroquinoline-1-oxide. When cells were induced into differentiation, the expression level of DNA ligase I was decreased to less than 15% of that of the control cells. When the gene of DNA ligase I was examined for tissue specific expression in adult rats, high levels of DNA ligase I mRNA were observed in testis (8-fold), intermediate levels in ovary and brain (4-fold), and low levels were found in intestine, spleen, and liver (1- to 2-fold).^ In confluent cells of normal skin fibroblasts, UV irradiation induced the gene expression of DNA ligase I at 24 and 48 h. The induction of DNA ligase I gene expression requires active p53 protein. Introducing a vector containing the wild type p53 protein in the cells caused an induction of the DNA ligase I protein 24 h after the treatment.^ Our results indicate that, in addition to the regulation by phosphorylation/dephosphorylation, cellular DNA ligase I activity can be regulated at the gene transcription level, and the p53 tumor suppresser is one of the transcription factors for the DNA ligase I gene. Also, our results suggest that DNA ligase I is involved in DNA repair as well as in DNA replication.^ Also, as an early attempt to clone the human homolog of the yeast CDC9 gene which has been shown to be involved in DNA replication, DNA repair, and DNA recombination, we have identified a human gene with mRNA of 1.7 kb. This dissertation studies the gene regulation and the possible biological functions of this new human gene by examining its expression at different stages of the cell cycle, during cell differentiation, and in cellular response to DNA damage.^ The new gene that we recently identified from human cells is highly expressed in brain and reproductive organs (BRE). This BRE gene encodes an mRNA of 1.7-1.9 kb, with an open reading frame of 1,149 bp, and gives rise to a deduced polypeptide of 383 amino acid residues. No extensive homology was found between BRE and sequences from the EMBL-Gene Banks. BRE showed tissue-specific expression in adult rats. The steady state mRNA levels were high in testis (5-6 fold), ovary and brain (3-4 fold) compared to the spleen level, but low in intestine and liver (1-2 fold). The expression of this gene is responsive to DNA damage and/or retinoic acid (RA) treatment. Treatment of fibroblast cells with UV irradiation and 4-nitroquinoline-1-oxide caused more than 90% and 50% decreases in BRE mRNA, respectively. Similar decreases in BRE expression were observed after treatment of the brain glioma cell line U-251 and the promyelocytic cell line HL-60 with retinoic acid. (Abstract shortened by UMI). ^
Resumo:
The aim of my project is to examine the mechanisms of cell lineage-specific transcriptional regulation of the two type I collagen genes by characterizing critical cis-acting elements and trans-acting factors. I hypothesize that the transcription factors that are involved in the cell lineage-specific expression of these genes may have a larger essential role in cell lineage commitment and differentiation. I first examined the proximal promoters of the proα1(I) and the proα2(I) collagen genes for cell type-specific DNA-protein interactions, using in vitro DNaseI and in vivo DMS footprinting. These experiments demonstrated that the cis-acting elements in these promoters are accessible to ubiquitous DNA-binding proteins in fibroblasts that express these genes, but not in other cells that do not express these genes. I speculate that in type I collagen-expressing cells, cell type-specific enhancer elements facilitate binding of ubiquitous proteins to the proximal promoters of these genes. Subsequently, examination of the upstream promoter of the proα(I) collagen gene by transgenic mice experiments delineated a 117 bp sequence (-1656 to -1540 bp) as the minimum element required for osteoblast-specific expression. This 117 bp element contained two segments that appeared to have different functions: (1) the A-segment, which was necessary to obtain osteoblast-specific expression and (2) the C-segment, which was dispensable for osteoblast-specific expression, but was necessary to obtain high-level expression. In experiments to identify trans-acting factors that bind to the 117 bp element, I have demonstrated that the cell lineage-restricted homeodomain proteins, Dlx2, Dlx5 and mHOX, bound to the A-segment and that the ubiquitous transcription factor, Sp1, bound to the C-segment of this element. These results suggested a model where the binding of cell lineage-restricted proteins to the A-segment and of ubiquitous proteins to the C-segment of the 117 bp element of the proα1 (I) collagen gene activated this gene in osteoblasts. These results, combined with additional evidence that Dlx2, Dlx5 and mHOX are probably involved in osteoblast differentiation, support my hypothesis that the transcription factors involved in osteoblast-specific expression of type I collagen genes may have essential role in osteoblast lineage commitment and differentiation. ^
Resumo:
Wilms tumor (WT) or nephroblastoma is a genetically heterogeneous pediatric renal tumor that accounts for 6–7% of all childhood cancers in the U.S. WT1, located at 11p13, is the sole WT gene cloned to date. Additional genomic regions containing genes that play a role in the development of Wilms tumor include 11p15, 7p, 16q, 1p, 17q and 19q. This heterogeneity has made it extremely difficult to develop an understanding of the pathways involved in the development of WT, even in the 5–20% of tumors that show mutations at the WT1 locus. My research addresses this gap in our current comprehension of the development of WT. ^ I have used two complementary approaches to extend the current understanding of molecular changes involved in the development of WT. In order to minimize complexities due to genetic heterogeneity, I confined my analysis to the WT1 pathway by assessing those genetically defined tumors that carry WT1 mutations. WT1 encodes a zinc finger transcription factor, and in vitro studies have identified many genes that are potentially regulated in vivo by WT1. However, there is very little in vivo data that suggests that they are transcriptionally regulated endogenously by WT1. In one approach I assessed the role of WT1 in the in vivo regulation of PDGFA and IGF2, two genes that are strong contenders for endogenous regulation by WT1. Using primary tissue samples, I found no correlation between the level of RNA expression of WT1 with either PDGFA or IGF2, suggesting that WT1 does not play a critical role in their expression in either normal kidney or WT. ^ In a parallel strategy, using differential display analysis I compared global gene expression in a subset of tumors with known homozygous inactivating WT1 mutations (WT1-tumors) to the gene expression in a panel of appropriate control tissues (fetal kidney, normal kidney, rhabdoid tumor and pediatric renal cell carcinoma). Transcripts that are aberrantly expressed in this subset of Wilms tumors are candidates for endogenous transcriptional regulation by WT1 as well as for potentially functioning in the development of WT. By this approach I identified several differentially expressed transcripts. I further characterized two of these transcripts, identifying a candidate WT gene in the process. I then performed a detailed analysis of this WT candidate gene, which maps to 7p. Future studies will shed more light on the role of these differentially expressed genes in WT. ^