956 resultados para cyclic imides
Resumo:
The influence of dexamethasone on the development of neurons and oligodendrocytes was studied in serum-free, aggregating rat brain cell cultures. Synaptogenesis and myelination occur in this culture system. The concentration of myelin basic protein and the activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase were used as oligodendroglia and myelin markers. Choline acetyltransferase and acetylcholinesterase served as neuronal markers, glutamine synthetase reflected astrocyte differentiation, while ornithine decarboxylase served as a general marker for cell growth and maturation. This study showed that dexamethasone stimulated the differentiation of cholinergic neurons and astrocytes. The effect of dexamethasone on oligodendroglial differentiation and myelination depended on the stage of development: during the early phase of myelination dexamethasone had a stimulatory effect, whereas at a later stage it showed a significant inhibition.
Resumo:
The mechanisms underlying preferential atrophy of the striatum in Huntington's disease (HD) are unknown. One hypothesis is that a set of gene products preferentially expressed in the striatum could determine the particular vulnerability of this brain region to mutant huntingtin (mHtt). Here, we studied the striatal protein µ-crystallin (Crym). Crym is the NADPH-dependent p38 cytosolic T3-binding protein (p38CTBP), a key regulator of thyroid hormone (TH) T3 (3,5,3'-triiodo-l-thyronine) transportation. It has been also recently identified as the enzyme that reduces the sulfur-containing cyclic ketimines, which are potential neurotransmitters. Here, we confirm the preferential expression of the Crym protein in the rodent and macaque striatum. Crym expression was found to be higher in the macaque caudate than in the putamen. Expression of Crym was reduced in the BACHD and Knock-in 140CAG mouse models of HD before onset of striatal atrophy. We show that overexpression of Crym in striatal medium-size spiny neurons using a lentiviral-based strategy in mice is neuroprotective against the neurotoxicity of an N-terminal fragment of mHtt in vivo. Thus, reduction of Crym expression in HD could render striatal neurons more susceptible to mHtt suggesting that Crym may be a key determinant of the vulnerability of the striatum. In addition our work points to Crym as a potential molecular link between striatal degeneration and the THs deregulation reported in HD patients.
Resumo:
Information on the spatial structure of soil physical and structural properties is needed to evaluate the soil quality. The purpose of this study was to investigate the spatial behavior of preconsolidation pressure and soil moisture in six transects, three selected along and three across coffee rows, at three different sites under different tillage management systems. The study was carried out on a farm, in Patrocinio, state of Minas Gerais, in the Southeast of Brazil (18 º 59 ' 15 '' S; 46 º 56 ' 47 '' W; 934 m asl). The soil type is a typic dystrophic Red Latosol (Acrustox) and consists of 780 g kg-1 clay; 110 g kg-1 silt and 110 g kg-1 sand, with an average slope of 3 %. Undisturbed soil cores were sampled at a depth of 0.10-0.13 m, at three different points within the coffee plantation: (a) from under the wheel track, where equipment used in farm operations passes; (b) in - between tracks and (c) under the coffee canopy. Six linear transects were established in the experimental area: three transects along and three across the coffee rows. This way, 161 samples were collected in the transect across the coffee rows, from the three locations, while 117 samples were collected in the direction along the row. The shortest sampling distance in the transect across the row was 4 m, and 0.5 m for the transect along the row. No clear patterns of the preconsolidation pressure values were observed in the 200 m transect. The results of the semivariograms for both variables indicated a high nugget value and short range for the studied parameters of all transects. A cyclic pattern of the parameters was observed for the across-rows transect. An inverse relationship between preconsolidation pressure and soil moisture was clearly observed in the samples from under the track, in both directions.
Resumo:
A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation.DOI: http://dx.doi.org/10.7554/eLife.02510.001.
Resumo:
The antidiuretic effect of vasopressin is mediated by V2 receptors (V2R) that are located in kidney connecting tubules and collecting ducts. This study provides evidence that V2R signaling is negatively regulated by regulator of G protein signaling 2 (RGS2), a member of the family of RGS proteins. This study demonstrates that (1) RGS2 expression in the kidney is restricted to the vasopressin-sensitive part of the nephron (thick ascending limb, connecting tubule, and collecting duct); (2) expression of RGS2 is rapidly upregulated by vasopressin; (3) the vasopressin-dependent accumulation of cAMP, the principal messenger of V2R signaling, is significantly higher in collecting ducts that are microdissected from the RGS2(-/-) mice compared with their wild-type littermates; and (4) analysis of urine output of mice that were exposed to water restriction followed by acute water loading revealed that RGS2(-/-) mice exhibit an increased renal responsiveness to vasopressin. It is proposed that RGS2 is involved in negative feedback regulation of V2R signaling.
Resumo:
Effective treatment of ovarian cancer depends upon the early detection of the malignancy. Here, we report on the development of a new nanostructured immunosensor for early detection of cancer antigen 125 (CA-125). A gold electrode was modified with mercaptopropionic acid (MPA), and then consecutively conjugated with silica coated gold nanoparticles (AuNP@SiO2), CdSe quantum dots (QDs) and anti-CA-125 monoclonal antibody (mAb). The engineered MPA|AuNP@SiO2|QD|mAb immunosensor was characterised using transmission electron microscopy (TEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Successive conjugation of AuNP@SiO2, CdSe QD and anti-CA-125 mAb onto the gold electrode resulted in sensitive detection of CA-125 with a limit of detection (LOD) of 0.0016 U mL(-1) and a linear detection range (LDR) of 0-0.1 U mL(-1). Based on the high sensitivity and specificity of the immunosensor, we propose this highly stable and reproducible biosensor for the early detection of CA-125.
Insulin and insulin-like growth factor I receptors utilize different G protein signaling components.
Resumo:
We examined the role of heterotrimeric G protein signaling components in insulin and insulin-like growth factor I (IGF-I) action. In HIRcB cells and in 3T3L1 adipocytes, treatment with the Galpha(i) inhibitor (pertussis toxin) or microinjection of the Gbetagamma inhibitor (glutathione S-transferase-betaARK) inhibited IGF-I and lysophosphatidic acid-stimulated mitogenesis but had no effect on epidermal growth factor (EGF) or insulin action. In basal state, Galpha(i) and Gbeta were associated with the IGF-I receptor (IGF-IR), and after ligand stimulation the association of IGF-IR with Galpha(i) increased concomitantly with a decrease in Gbeta association. No association of Galpha(i) was found with either the insulin or EGF receptor. Microinjection of anti-beta-arrestin-1 antibody specifically inhibited IGF-I mitogenic action but had no effect on EGF or insulin action. beta-Arrestin-1 was associated with the receptors for IGF-I, insulin, and EGF in a ligand-dependent manner. We demonstrated that Galpha(i), betagamma subunits, and beta-arrestin-1 all play a critical role in IGF-I mitogenic signaling. In contrast, neither metabolic, such as GLUT4 translocation, nor mitogenic signaling by insulin is dependent on these protein components. These results suggest that insulin receptors and IGF-IRs can function as G protein-coupled receptors and engage different G protein partners for downstream signaling.
Resumo:
A monoclonal antibody (8-18C5) directed against myelin/oligodendrocyte glycoprotein (MOG) induced demyelination in aggregating brain cell cultures. With increasing doses of anti-MOG antibody in the presence of complement, myelin basic protein (MBP) concentration decreased in a dose-related manner. A similar, albeit less pronounced, effect was observed on specific activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase. In the absence of complement, anti-MOG antibody did not induce detectable demyelination. In contrast to the effect of anti-MOG antibody and as expected, anti-MBP antibody did not demyelinate aggregating brain cell cultures in the presence of complement. These results provide additional support to the suggestion that MOG, a quantitatively minor myelin component located on the external side of the myelin membrane, is a good target antigen for antibody-induced demyelination. Indeed, they show that a purified anti-MOG antibody directed against a single epitope on the glycoprotein can produce demyelination, not only in vivo as previously shown, but also in cultures. Such an observation has not been made with polyclonal antisera raised against purified myelin proteins like MBP and proteolipid protein, the major protein components of the myelin membrane, or myelin-associated glycoprotein. These observations may have important implications regarding the possible role of anti-MOG antibodies in demyelinating diseases.
Resumo:
We use cryo-electron microscopy to compare 3D shapes of 158 bp long DNA minicircles that differ only in the sequence within an 18 bp block containing either a TATA box or a catabolite activator protein binding site. We present a sorting algorithm that correlates the reconstructed shapes and groups them into distinct categories. We conclude that the presence of the TATA box sequence, which is believed to be easily bent, does not significantly affect the observed shapes.
Resumo:
We provide the first evidence that point mutations can constitutively activate the beta(1)-adrenergic receptor (AR). Leucine 322 of the beta(1)-AR in the C-terminal portion of its third intracellular loop was replaced with seven amino acids (I, T, E, F, C, A and K) differing in their physico-chemical properties. The beta(1)-AR mutants expressed in HEK-293 cells displayed various levels of constitutive activity which could be partially inhibited by some beta-blockers. The results of this study might have interesting implications for future studies aiming at elucidating the activation process of the beta(1)-AR as well as the mechanism of action of beta-blockers.
Resumo:
Purpose. To investigate the effect of the endothelin(A) receptor inhibitor BQ-123 on the retinal arteriolar vasculature in minipig retinas in normal eyes and eyes with acute branch retinal vein occlusion (BRVO). Methods. Seven healthy eyes of seven minipigs and six eyes of six minipigs with experimental BRVO were evaluated under systemic anesthesia. An intravitreal juxta-arteriolar microinjection of 30 microL BQ-123 0.61 microg/mL (pH 7.4) was performed in all but one eye from each group, into which the physiologic saline vehicle alone was injected. Vessel-diameter changes were measured with a retinal vessel analyzer. Results. In healthy minipig retinas (n = 6), arteriolar diameter (+/-SD) increased 6.19% +/- 3.55% (P < 0.05), 25.98% +/- 2.37% (P < 0.001), 23.65% +/- 1.2% (P < 0.001), and 16.84% +/- 1.95% (P < 0.001), at 1, 5, 10, and 15 minutes, respectively, after BQ-123 microinjection. Two hours after experimental BRVO (n = 5), the retinal arteriolar diameter had decreased (13.07% +/- 5.7%; P < 0.01). One, 5, 10, and 15 minutes after BQ-123 microinjection, retinal arteriolar diameter had increased by 7.14% +/- 3.3% (P < 0.01), 26.74% +/- 7.63% (P < 0.001), 23.67% +/- 6.4% (P < 0.001), and 16.09% +/- 3.41% (P < 0.001), respectively. Vehicle only injection had no vasoactive effect on physiologic or BRVO retinas. Conclusions. A significant increase in retinal arteriolar diameter was demonstrated after juxta-arteriolar BQ-123 microinjection in healthy and in acute BRVO minipig retinas. The results suggest a role for endothelin-1 in maintaining retinal basal arteriolar tone. Reversing the BRVO-related vasoconstriction by juxta-arteriolar BQ-123 microinjection could bring a new perspective to the management of BRVO.
Resumo:
To control the selective adhesion of human endothelial cells and human serum proteins to bioceramics of different compositions, a multifunctional ligand containing a cyclic arginine-glycine-aspartate (RGD) peptide, a tetraethylene glycol spacer, and a gallate moiety was designed, synthesized, and characterized. The binding of this ligand to alumina-based, hydroxyapatite-based, and calcium phosphate-based bioceramics was demonstrated. The conjugation of this ligand to the bioceramics induced a decrease in the nonselective and integrin-selective binding of human serum proteins, whereas the binding and adhesion of human endothelial cells was enhanced, dependent on the particular bioceramics.
Resumo:
Short- and long-term effect of oxytocin on Na+ transport and Na-K-ATPase biosynthesis in the toad bladder, and the potential interaction of this hormone with aldosterone have been studied, leading to the following observations. An early Na+ transport response (oxytocin, 50 mU/ml) peaked at 10-15 min of hormone addition. At maximal stimulation a three- to fourfold increase in Na+ transport was observed, a sustained Na+ transport response (about two-fold control base line) was observed as long as the hormone was present in the medium and for up to 20 h of incubation. Pretreatment for 30 min with actinomycin D (2 micrograms/ml) did not inhibit the early response, but significantly impaired the sustained response, suggesting that de novo protein synthesis was required. The simultaneous addition of the two hormones led within 60 min to a marked potentiation of the action on Na+ transport. This synergism could be mimicked by exogenous cyclic adenosine monophosphate (cAMP). Oxytocin alone (18 h exposure, 50 mU/ml) increased the relative rate of synthesis of both alpha and beta subunits of Na-K-ATPase (1.9- and 1.6-fold, respectively; P less than 0.05), whereas aldosterone (80 nM) increased the relative rate of synthesis of the same subunits (2.6- and 2.2-fold, respectively; P less than 0.02). Finally, in contrast to what was observed at the physiological level, the interaction of oxytocin and aldosterone did not lead to a similar potentiation at the biochemical level, i.e., induction of Na-K-ATPase biosynthesis (2.7- and 2.9-fold, for alpha and beta subunits, respectively; P less than 0.025).
Resumo:
The Iowa Department of Transportation has long recognized that approach slab pavements of integral abutment bridges are prone to settlement and cracking, which manifests as the “bump at the end of the bridge”. A commonly recommended solution is to integrally attach the approach slab to the bridge abutment. Two different approach slabs, one being precast concrete and the other being cast-inplace concrete, were integrally connected to side-by-side bridges and investigated. The primary objective of this investigation was to evaluate the approach slab performance and the impacts the approach slabs have on the bridge. To satisfy the research needs, the project scope involved a literature review, survey of Midwest Department of Transportation current practices, implementing a health monitoring system on the bridge and approach slab, interpreting the data obtained during the evaluation, and conducting periodic visual inspections. Based on the information obtained from the testing the following general conclusions were made: The integral connection between the approach slabs and the bridges appear to function well with no observed distress at this location and no relative longitudinal movement measured between the two components; Tying the approach slab to the bridge appears to impact the bridge; The two different approach slabs, the longer precast slab and the shorter cast-in-place slab, appear to impact the bridge differently; The measured strains in the approach slabs indicate a force exists at the expansion joint and should be taken into consideration when designing both the approach slab and the bridge; The observed responses generally followed an annual cyclic and/or short term cyclic pattern over time.
Resumo:
Normalization of the increased vascular nitric oxide (NO) generation with low doses of NG-nitro-L-arginine methyl ester (L-NAME) corrects the hemodynamic abnormalities of cirrhotic rats with ascites. We have undertaken this study to investigate the effect of the normalization of vascular NO production, as estimated by aortic cyclic guanosine monophosphate (cGMP) concentration and endothelial nitric oxide synthase (eNOS) protein expression in the aorta and mesenteric artery, on sodium and water excretion. Rats with carbon tetrachloride-induced cirrhosis and ascites were investigated using balance studies. The cirrhotic rats were separated into two groups, one receiving 0.5 mg/kg per day of L-NAME (CIR-NAME) during 7 d, whereas the other group (CIR) was administrated the same volume of vehicle. Two other groups of rats were used as controls, one group treated with L-NAME and another group receiving the same volume of vehicle. Sodium and water excretion was measured on days 0 and 7. On day 8, blood samples were collected for electrolyte and hormone measurements, and aorta and mesenteric arteries were harvested for cGMP determination and nitric oxide synthase (NOS) immunoblotting. Aortic cGMP and eNOS protein expression in the aorta and mesenteric artery were increased in CIR as compared with CIR-NAME. Both cirrhotic groups had a similar decrease in sodium excretion on day 0 (0.7 versus 0.6 mmol per day, NS) and a positive sodium balance (+0.9 versus +1.2 mmol per day, NS). On day 7, CIR-NAME rats had an increase in sodium excretion as compared with the CIR rats (sodium excretion: 2.4 versus 0.7 mmol per day, P < 0.001) and a negative sodium balance (-0.5 versus +0.8 mmol per day, P < 0.001). The excretion of a water load was also increased after L-NAME administration (from 28+/-5% to 65+/-7, P < 0.05). Plasma renin activity, aldosterone and arginine vasopressin were also significantly decreased in the CIR-NAME, as compared with the CIR rats. The results thus indicate that normalization of aortic cGMP and eNOS protein expression in vascular tissue is associated with increased sodium and water excretion in cirrhotic rats with ascites.