997 resultados para critical moisture
Resumo:
8 0年代以来 ,以林草地地力衰退为特征的人工林草地土壤退化日趋严重 ,其中以土壤水分严重亏缺为特征的土壤干化现象愈益引起了人们的重视。土壤干化的直接后果是形成土壤干层 ,导致土壤退化 ,植物生长速率减缓 ,群落衰败以至大片死亡 ,严重地威胁到我国北方地区特别是黄土高原地区生态环境的建设。因此 ,研究和解决土壤干层问题已成为黄土高原植被建设的迫切任务。根据延安试区的土壤水分和植被生长状况调查资料 ,初步分析了不同条件下刺槐人工林地的水分状况。结果表明 :试区刺槐人工林地普遍形成了土壤干层 ,且已相当严重 ;坡向对土壤干层有明显影响 ,阳坡形成的干层较阴坡严重 ;坡度愈大 ,土壤干化愈剧烈 ;林龄对干层严重程度影响不明显。同时 ,研究指出了解决土壤干层问题的意义。
Resumo:
坡地的水土流失及磷素在泥沙中的富集不仅导致土地生产力下降、环境恶化 ,也对下游水体的环境造成严重危害。以不同施磷时间的黄绵土为试验材料 ,通过人工模拟降雨试验观察了坡地侵蚀土壤水分含量 (SM)与有效磷含量 (APC)的空间变化特征。结果表明 :自坡顶向下侵蚀土壤表层 0~ 5 cm与 5~ 10 cm的土壤水分 (SM)呈现出完全一致的波浪状递增趋势。有效磷含量 (APC)的空间变化虽然也为波浪状 ,但其节奏要较水分变化快一倍 ,而且 0~ 5 cm与 5~ 10 cm两层间并不同步 ,下层略有滞后。磷向 2 0 cm以下土层的迁移量极少 ,不同坡位间差别不大。施磷 2 4d以前从坡顶向下有效磷含量 (APC)呈降低趋势 ,而施磷 2 4d以后在坡下则略有富集 ;施磷 6 d以前坡地 0~ 5 cm土层有效磷含量 (APC)较 6 d以后低 8%左右
Resumo:
A probabilistic soil moisture dynamic model is used to estimate the soil moisture probability distribution and plant water stress of irrigated cropland in the North China Plain. Soil moisture and meteorological data during the period of 1998 to 2003 were obtained from an irrigated cropland ecosystem with winter wheat and maize in the North China Plain to test the probabilistic soil moisture dynamic model. Results showed that the model was able to capture the soil moisture dynamics and estimate long-term water balance reasonably well when little soil water deficit existed. The prediction of mean plant water stress during winter wheat and maize growing season quantified the suitability of the wheat-maize rotation to the soil and climate environmental conditions in North China Plain under the impact of irrigation. Under the impact of precipitation fluctuations, there is no significant bimodality of the average soil moisture probability density function.
Resumo:
We report that the brittle-ductile transition of polymers induced by temperature exhibits critical behavior. When t close to 0, the critical surface to surface interparticle distance (IDc) follows the scaling law: IDc proportional to t(-v) where t = 1 - T/T-BD(m) (T and T-BD(m) are the test temperature and brittle-ductile transition temperature of matrix polymer, respectively) and v = 2/D. It is clear that the scaling exponent v only depends on dimension (D). For 2, 3, and 4 dimension, v = 1, 2/3, and 1/2 respectively. The result indicates that the ID, follows the same scaling law as that of the correlation length (xi), when t approach to zero.
Resumo:
The unique surface-sensitive properties make quantum dots (QDs) great potential in the development of sensors for various analytes. However, quantum dots are not only sensitive to a certain analyte, but also to the surrounding conditions. The controlled response to analyte may be the first step in the designing of functional quantum dots sensors. In this study, taking the quenching effect of benzoquinone (BQ) on CdTe QDs as model, several critical parameters of buffer solution conditions with potential effect on the sensors were investigated. The pH value and the concentration of sodium citrate in the buffer solution critically influenced the quenching effects of BQ.
Resumo:
Sodium polyacrylate was synthesized with acrylic acid as the monomer, and sodium bisulfate and ammonium persulfate as the initiator, by means of aqueous solution polymerization. The factors influencing the properties of moisture absorption, such as monomer concentration, dosage of initiator, and reaction temperature were systematically investigated. The experimental results indicate that the moisture-absorbing property of this polymer was better than other traditional material, such as silica gel, and molecular sieve. The best reaction condition and formula are based on the orthogonal experiment design. The optimum moisture absorbency of sodium polyacrylate reaches 1.01 g/g. The mathematical correlation of this polymer with various factors and moisture absorbency is obtained based on the multiple regression analysis. The moisture content intuitive analysis table shows that neutralization degree has the most significant influence on moisture absorbency, followed by monomer concentration and reaction temperature, while other factors have less influence.
Resumo:
Poly(ethylene glycol) (PEG) networks were synthesized by gamma-irradiation. The crystalline behavior of PEG was investigated by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). It was shown that the crystallinity of PEG is dramatically lower in the cross-linked, networks than in pure PEG. When the molecular weight of PEG in the networks decreased to 1000, it could not crystallize at all. Moreover, we also found that the melting temperature of PEG is greatly affected by the presence of a cross-linked network.
Resumo:
The crystallization behavior of high-density polyethylene (HDPE) on highly oriented isotactic polypropylene (iPP) at elevated temperatures (e.g., from 125 to 128 degrees C), was studied using transmission electron microscopy and electron diffraction. The results show that epitaxial crystallization of HDPE on the highly oriented iPP substrates occurs only in a thin layer which is in direct contact with the iPP substrate, when the HDPE is crystallized from the melt on the oriented iPP substrates at 125 degrees C. The critical layer thickness of the epitaxially crystallized HDPE is not more than 30 nm when the HDPE is isothermally crystallized on the oriented iPP substrates at 125 degrees C. When the crystallization temperature is above 125 degrees C, the HDPE crystallizes in the form of crystalline aggregates and a few individual crystalline lamellae. But both the crystalline aggregates and the individual crystalline lamellae have no epitaxial orientation relationship with the iPP substrate. This means that there exists a critical crystallization temperature for the occurrence of epitaxial crystallization of HDPE on the melt-drawn oriented iPP substrates (i.e., 125 degrees C). (C) 1997 John Wiley & Sons, Inc.
Resumo:
The contact angles theta of polar liquids on PP-g-AM copolymer (AM content 0.19, 0.26, and 0.37 wt%) were measured. The critical surface tension gamma(c) of PP-g-AM films were evaluated by the Zisman plot (cos theta versus gamma(L)), the Young-Dupre-Good-Girifalco plot (1 + cos theta) versus 1/gamma(L)(0.5), and the log(1 + cos theta) versus log gamma(L) plot. The gamma(L) values estimated by the plot log(1 + cos theta) versus log gamma(L) were smaller than those obtained by the other plots.
Resumo:
The melting points(T-m), crystalline temperature(T-c) and crystallinity(chi(c)) of propylene/alpha-olefin (pentene-l, octene-1 and decene-1) copolymers have been investigated, The results show that the T-m, T-c and chi(c) of the copolymers are lower than those of propylene homopolymer, indicating that lower alpha-olefin incorporation in copolymer has strongly hampered the crystallization of propylene, From critical crystalline sequence length of several propylene/alpha-olefin copolymers, it can be seen that a long chain alpha-olefin has much stronger effect on crystallization of PP than a short alpha-olefin does.
Resumo:
The dynamics of phase separation in a binary polymer blend of poly(vinyl acetate) with poly(methyl methacrylate) was investigated by using a time-resolved light-scattering technique. In the later stages of spinodal decomposition, a simple dynamic scaling law was found for the scattering function S(q, t)(S(q, t) approximately I(q, t)): S(q, t)q(m)-3 S approximately (q/q(m)). The scaling function determined experimentally was in good agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X8) for critical concentration, and approximately in agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X6) for non-critical mixtures. The light-scattering invariant shows that the later stages of the spinodal decomposition were undergoing domain ripening.