991 resultados para cooperative level crossings
Resumo:
Non-classical properties and quantum interference (QI) in two-photon excitation of a three level atom (|1〉), |2〉, |3〉) in a ladder configuration, illuminated by multiple fields in non-classical (squeezed) and/or classical (coherent) states, is studied. Fundamentally new effects associated with quantum correlations in the squeezed fields and QI due to multiple excitation pathways have been observed. Theoretical studies and extrapolations of these findings have revealed possible applications which are far beyond any current capabilities, including ultrafast nonlinear mixing, ultrafast homodyne detection and frequency metrology. The atom used throughout the experiments was Cesium, which was magneto-optically trapped in a vapor cell to produce a Doppler-free sample. For the first part of the work the |1〉 → |2〉 → |3〉 transition (corresponding to the 6S1/2F = 4 → 6P3/2F' = 5 → 6D5/2F" = 6 transition) was excited by using the quantum-correlated signal (Ɛs) and idler (Ɛi) output fields of a subthreshold non-degenerate optical parametric oscillator, which was tuned so that the signal and idler fields were resonant with the |1〉 → |2〉 and |2〉 → |3〉 transitions, respectively. In contrast to excitation with classical fields for which the excitation rate as a function of intensity has always an exponent greater than or equal to two, excitation with squeezed-fields has been theoretically predicted to have an exponent that approaches unity for small enough intensities. This was verified experimentally by probing the exponent down to a slope of 1.3, demonstrating for the first time a purely non-classical effect associated with the interaction of squeezed fields and atoms. In the second part excitation of the two-photon transition by three phase coherent fields Ɛ1 , Ɛ2 and Ɛ0, resonant with the dipole |1〉 → |2〉 and |2〉 → |3〉 and quadrupole |1〉 → |3〉 transitions, respectively, is studied. QI in the excited state population is observed due to two alternative excitation pathways. This is equivalent to nonlinear mixing of the three excitation fields by the atom. Realizing that in the experiment the three fields are spaced in frequency over a range of 25 THz, and extending this scheme to other energy triplets and atoms, leads to the discovery that ranges up to 100's of THz can be bridged in a single mixing step. Motivated by these results, a master equation model has been developed for the system and its properties have been extensively studied.
Resumo:
The problem of the Atchison, Topeka, and Santa Fe railroad in Pasadena is a very dynamic one, as is readily recognized by engineers, city officials, and laymen. The route of the railroad was first laid out in the eighties and because of certain liberal concessions granted by the City of Pasadena, the right-of-way was located through Pasadena, despite the fact that the grade coming into the city either from Los Angeles or San Bernardino was enormous. Some years later, other transcontinental routes of the Santa Fe out of Los Angles were sought, and a right-of-way was obtained by way of Fullerton and Riverside to San Bernardino, where this route joins the one from Los Angeles through Pasadena. This route, however, is ten miles longer than the one through Pasadena, which means a considerable loss of time in a short diversion of approximately only sixty miles in length.
Resumo:
Part I
The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.
Part II
Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.
Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.
Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.
Resumo:
Up-conversion luminescence characteristics under 975 nm excitation have been investigated with Tb3+/Tm3+/Yb3+ triply doped tellurite glasses. Here, green (547 nm: D-5(4) --> F-7(4)) and red (660 nm: D-5(4) --> F-7(2)) up-conversion (UC) luminescence originating from Tb3+ is observed strongly, because of the quadratic dependences of emission intensities on the excitation power. Especially, the UC luminescence was intensified violently with the energy transfer from the Tm3+ ions involves in the Tb3+ excitation. To the Tb3+/Tm3+/Yb3+ triply doped glass system, a novel up-conversion mechanism is proposed as follows: the energy of (3)G(4) level (Tm3+) was transferred to D-5(4) (Tb3+) and the 477-nm UC luminescence of Tm3+ was nearly quenched. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
An air filled ionization chamber has been constructed with a volume of 552 liters and a wall consisting of 12.7 mg/cm2 of plastic wrapped over a rigid, lightweight aluminum frame. A calibration in absolute units, independent of previous Caltech ion chamber calibrations, was applied to a sealed Neher electrometer for use in this chamber. The new chamber was flown along with an older, argon filled, balloon type chamber in a C-135 aircraft from 1,000 to 40,000 feet altitude, and other measurements of sea level cosmic ray ionization were made, resulting in the value of 2.60 ± .03 ion pairs/cm3 sec atm) at sea level. The calibrations of the two instruments were found to agree within 1 percent, and the airplane data were consistent with previous balloon measurements in the upper atmosphere. Ionization due to radon gas in the atmosphere was investigated. Absolute ionization data in the lower atmosphere have been compared with results of other observers, and discrepancies have been discussed.
Data from a polar orbiting ion chamber on the OGO-II, IV spacecraft have been analyzed. The problem of radioactivity produced on the spacecraft during passes through high fluxes of trapped protons has been investigated, and some corrections determined. Quiet time ionization averages over the polar regions have been plotted as function of altitude, and an analytical fit is made to the data that gives a value of 10.4 ± 2.3 percent for the fractional part of the ionization at the top of the atmosphere due to splash albedo particles, although this result is shown to depend on an assumed angular distribution for the albedo particles. Comparisons with other albedo measurements are made. The data are shown to be consistent with balloon and interplanetary ionization measurements. The position of the cosmic ray knee is found to exhibit an altitude dependence, a North-South effect, and a small local time variation.
Resumo:
The study of metallothioneins (MTs) has greatly improved our understanding of body burdens, metal storage and detoxification in aquatic organisms subjected to contamination by the toxic heavy metals, Cd, Cu, Hg and Zn. These studies have shown that in certain organisms MT status can be used to assess impact of these metals at the cellular level and, whilst validation is currently limited to a few examples, this stress response may be linked to higher levels of organisation, thus indicating its potential for environmental quality assessment. Molluscs, such as Mytilus spp., and several commonly occurring teleost species, are the most promising of the indicator species tested. Natural variability of MT levels caused by the organism's size, condition, age, position in the sexual cycle, temperature and various stressors, can lead to difficulties in interpretation of field data as a definitive response-indicator of metal contamination unless a critical appraisal of these variables is available. From laboratory and field studies these data are almost complete for teleost fish. Whilst for molluscs much of this information is lacking, when suitable controls are utilised and MT measurements are combined with observations of metal partitioning, current studies indicate that they are nevertheless a powerful tool in the interpretation of impact, and may prove useful in water quality assessment.
Resumo:
One of the most challenging problems in mobile broadband networks is how to assign the available radio resources among the different mobile users. Traditionally, research proposals are either speci c to some type of traffic or deal with computationally intensive algorithms aimed at optimizing the delivery of general purpose traffic. Consequently, commercial networks do not incorporate these mechanisms due to the limited hardware resources at the mobile edge. Emerging 5G architectures introduce cloud computing principles to add flexible computational resources to Radio Access Networks. This paper makes use of the Mobile Edge Computing concepts to introduce a new element, denoted as Mobile Edge Scheduler, aimed at minimizing the mean delay of general traffic flows in the LTE downlink. This element runs close to the eNodeB element and implements a novel flow-aware and channel-aware scheduling policy in order to accommodate the transmissions to the available channel quality of end users.
Resumo:
O desenvolvimento sustentável foi definido pelo Relatório Brundtland como o desenvolvimento que satisfaz as necessidades presentes, sem comprometer a capacidade das gerações futuras de suprir suas próprias necessidades. Esse tipo de desenvolvimento abarca tanto a questão do crescimento econômico com distribuição de renda, quanto a necessidade de se preservar os recursos escassos do planeta, além de seus ecossistemas. O desenvolvimento sustentável é um tema que aborda dois conceitos-chave que afetam as relações entre os países: a necessidade de desenvolvimento de muitas nações que ainda não atingiram o patamar de riqueza dos países desenvolvidos e o imperativo da sustentabilidade, que restringe a possibilidade do desenvolvimento econômico ao interferir no processo produtivo das nações. Dessa forma, torna-se necessário abordar o desenvolvimento sustentável na perspectiva das Relações Internacionais. Acordos cooperativos em relação ao meio ambiente têm sido assinados muito mais como forma de cooperação bilateral do que global. O contexto histórico nos leva a um ponto de inflexão no cenário internacional, iniciado no ano de 2002 e que perdura até os dias atuais. Neste início de século XXI, a convergência dos países ao desenvolvimento sustentável passa a ser analisada pelo esforço unilateral de cada nação, explicitando o uso dos indicadores de desenvolvimento sustentável e justificando sua apreciação. É neste período em que se dará a análise da economia brasileira, conforme proposto pela dissertação. A partir da análise dos dados fornecidos pelos indicadores para a situação do desenvolvimento sustentável no Brasil, tem-se elaborada a questão central que esta dissertação procurará responder: a efetividade no uso destes indicadores para o direcionamento das políticas de desenvolvimento sustentável das nações. A valoração do desenvolvimento sustentável é de vital importância para o posicionamento das nações frente ao tema ambiental no mundo. Como diferentes conceitos são aceitos para o tema, a possibilidade de um grande acordo multilateral acerca do mesmo fica prejudicada. A maneira encontrada por alguns países foi redirecionar suas economias unilateralmente à sustentabilidade. O que isso irá provocar nas Relações Internacionais só o tempo poderá dizer. O que é certo é que a frágil relação entre os países será afetada por esse fato. O Brasil desponta como um expoente do desenvolvimento sustentável, pelo menos na intenção, e é através do uso de ferramentas como os indicadores de desenvolvimento sustentável que podemos mensurar o quanto seu discurso se converte em prática.
Resumo:
150 p.
Resumo:
The past years have seen an increasing debate on cooperation and its unique human character. Philosophers and psychologists have proposed that cooperative activities are characterized by shared goals to which participants are committed through the ability to understand each other’s intentions. Despite its popularity, some serious issues arise with this approach to cooperation. First, one may challenge the assumption that high-level mental processes are necessary for engaging in acting cooperatively. If they are, then how do agents that do not possess such ability (preverbal children, or children with autism who are often claimed to be mind-blind) engage in cooperative exchanges, as the evidence suggests? Secondly, to define cooperation as the result of two de-contextualized minds reading each other’s intentions may fail to fully acknowledge the complexity of situated, interactional dynamics and the interplay of variables such as the participants’ relational and personal history and experience. In this paper we challenge such accounts of cooperation, calling for an embodied approach that sees cooperation not only as an individual attitude toward the other, but also as a property of interaction processes. Taking an enactive perspective, we argue that cooperation is an intrinsic part of any interaction, and that there can be cooperative interaction before complex communicative abilities are achieved. The issue then is not whether one is able or not to read the other’s intentions, but what it takes to participate in joint action. From this basic account, it should be possible to build up more complex forms of cooperation as needed. Addressing the study of cooperation in these terms may enhance our understanding of human social development, and foster our knowledge of different ways of engaging with others, as in the case of autism.
Resumo:
An efficient near-infrared (NIR) quantum cutting (QC) in GdAl3(BO3)(4):RE3+,Yb3+ (RE=Pr, Tb, and Tm) phosphors has been demonstrated, which involves the conversion of the visible photon into the NIR emission with an optimal quantum efficiency approaching 200%, by exploring the cooperative downconversion mechanism from RE3+ (RE=Pr, Tb, and Tm) excitons to the two activator ions, Yb3+. The development of NIR QC phosphors could open up a new approach in achieving high efficiency silicon-based solar cells by means of downconversion in the visible part of the solar spectrum to similar to 1000 nm photons with a twofold increase in the photon number. (c) 2007 American Institute of Physics.