906 resultados para computational models
Resumo:
This ALTC Teaching Fellowship aimed to establish Guiding Principles for Library and Information Science Education 2.0. The aim was achieved by (i) identifying the current and anticipated skills and knowledge required by successful library and information science (LIS) professionals in the age of web 2.0 (and beyond), (ii) establishing the current state of LIS education in Australia in supporting the development of librarian 2.0, and in doing so, identify models of best practice.
The fellowship has contributed to curriculum renewal in the LIS profession. It has helped to ensure that LIS education in Australia continues to meet the changing skills and knowledge requirements of the profession it supports. It has also provided a vehicle through which LIS professionals and LIS educators may find opportunities for greater collaboration and more open communication. This will help bridge the gap between LIS theory and practice and will foster more authentic engagement between LIS education and other parts of the LIS industry in the education of the next generation of professionals. Through this fellowship the LIS discipline has become a role model for other disciplines who will be facing similar issues in the coming years.
Eighty-one members of the Australian LIS profession participated in a series of focus groups exploring the current and anticipated skills and knowledge needed by the LIS professional in the web 2.0 world and beyond. Whilst each focus group tended to draw on specific themes of interest to that particular group of people, there was a great deal of common ground. Eight key themes emerged: technology, learning and education, research or evidence-based practice, communication, collaboration and team work, user focus, business savvy and personal traits.
It was acknowledged that the need for successful LIS professionals to possess transferable skills and interpersonal attributes was not new. It was noted however that the speed with which things are changing in the web 2.0 world was having a significant impact and that this faster pace is placing a new and unexpected emphasis on the transferable skills and knowledge. It was also acknowledged that all librarians need to possess these skills, knowledge and attributes and not just the one or two role models who lead the way.
The most interesting finding however was that web 2.0, library 2.0 and librarian 2.0 represented a ‘watershed’ for the LIS profession. Almost all the focus groups spoke about how they are seeing and experiencing a culture change in the profession. Librarian 2.0 requires a ‘different mindset or attitude’. The Levels of Perspective model by Daniel Kim provides one lens by which to view this finding. The focus group findings suggest that we are witnessing a re-awaking of the Australian LIS profession as it begins to move towards the higher levels of Kim’s model (ie mental models, vision).
Thirty-six LIS educators participated in telephone interviews aimed at exploring the current state of LIS education in supporting the development of librarian 2.0. Skills and knowledge of LIS professionals in a web 2.0 world that were identified and discussed by the LIS educators mirrored those highlighted in the focus group discussions with LIS professionals. Similarly it was noted that librarian 2.0 needed a focus less on skills and knowledge and more on attitude. However, whilst LIS professionals felt that there was a paradigm shift within the profession. LIS educators did not speak with one voice on this matter with quite a number of the educators suggesting that this might be ‘overstating it a bit’. This study provides evidence for “disparate viewpoints” (Hallam, 2007) between LIS educators and LIS professionals that can have a significant implications for the future of not just LIS professional education specifically but for the profession generally.
Library and information science education 2.0: guiding principles and models of best practice 1
Inviting the LIS academics to discuss how their teaching and learning activities support the development of librarian 2.0 was a core part of the interviews conducted. The strategies used and the challenges faced by LIS educators in developing their teaching and learning approaches to support the formation of librarian 2.0 are identified and discussed. A core part of the fellowship was the identification of best practice examples on how LIS educators were developing librarian 2.0. Twelve best practice examples were identified. Each educator was recorded discussing his or her approach to teaching and learning. Videos of these interviews are available via the Fellowship blog at
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.
Resumo:
Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes
Resumo:
This paper proposes the use of eigenvoice modeling techniques with the Cross Likelihood Ratio (CLR) as a criterion for speaker clustering within a speaker diarization system. The CLR has previously been shown to be a robust decision criterion for speaker clustering using Gaussian Mixture Models. Recently, eigenvoice modeling techniques have become increasingly popular, due to its ability to adequately represent a speaker based on sparse training data, as well as an improved capture of differences in speaker characteristics. This paper hence proposes that it would be beneficial to capitalize on the advantages of eigenvoice modeling in a CLR framework. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, resulting in a 35.1% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.
Resumo:
Abstract—Computational Intelligence Systems (CIS) is one of advanced softwares. CIS has been important position for solving single-objective / reverse / inverse and multi-objective design problems in engineering. The paper hybridise a CIS for optimisation with the concept of Nash-Equilibrium as an optimisation pre-conditioner to accelerate the optimisation process. The hybridised CIS (Hybrid Intelligence System) coupled to the Finite Element Analysis (FEA) tool and one type of Computer Aided Design(CAD) system; GiD is applied to solve an inverse engineering design problem; reconstruction of High Lift Systems (HLS). Numerical results obtained by the hybridised CIS are compared to the results obtained by the original CIS. The benefits of using the concept of Nash-Equilibrium are clearly demonstrated in terms of solution accuracy and optimisation efficiency.
Resumo:
Small animal fracture models have gained increasing interest in fracture healing studies. To achieve standardized and defined study conditions, various variables must be carefully controlled when designing fracture healing experiments in mice or rats. The strain, age and sex of the animals may influence the process of fracture healing. Furthermore, the choice of the fracture fixation technique depends on the questions addressed, whereby intra- and extramedullary implants as well as open and closed surgical approaches may be considered. During the last few years, a variety of different, highly sophisticated implants for fracture fixation in small animals have been developed. Rigid fixation with locking plates or external fixators results in predominantly intramembranous healing in both mice and rats. Locking plates, external fixators, intramedullary screws, the locking nail and the pin-clip device allow different degrees of stability resulting in various amounts of endochondral and intramembranous healing. The use of common pins that do not provide rotational and axial stability during fracture stabilization should be discouraged in the future. Analyses should include at least biomechanical and histological evaluations, even if the focus of the study is directed towards the elucidation of molecular mechanisms of fracture healing using the largely available spectrum of antibodies and gene-targeted animals to study molecular mechanisms of fracture healing. This review discusses distinct requirements for the experimental setups as well as the advantages and pitfalls of the different fixation techniques in rats and mice.
Resumo:
Polynomial models are shown to simulate accurately the quadratic and cubic nonlinear interactions (e.g. higher-order spectra) of time series of voltages measured in Chua's circuit. For circuit parameters resulting in a spiral attractor, bispectra and trispectra of the polynomial model are similar to those from the measured time series, suggesting that the individual interactions between triads and quartets of Fourier components that govern the process dynamics are modeled accurately. For parameters that produce the double-scroll attractor, both measured and modeled time series have small bispectra, but nonzero trispectra, consistent with higher-than-second order nonlinearities dominating the chaos.
Resumo:
Overall, computer models and simulations have a rather disappointing record within the management sciences as a tool for predicting the future. Social and market environments can be influenced by an overwhelming number of variables, and it is therefore difficult to use computer models to make forecasts or to test hypotheses concerning the relationship between individual behaviours and macroscopic outcomes. At the same time, however, advocates of computer models argue that they can be used to overcome the human mind's inability to cope with several complex variables simultaneously or to understand concepts that are highly counterintuitive. This paper seeks to bridge the gap between these two perspectives by suggesting that management research can indeed benefit from computer models by using them to formulate fruitful hypotheses.
Resumo:
We consider a robust filtering problem for uncertain discrete-time, homogeneous, first-order, finite-state hidden Markov models (HMMs). The class of uncertain HMMs considered is described by a conditional relative entropy constraint on measures perturbed from a nominal regular conditional probability distribution given the previous posterior state distribution and the latest measurement. Under this class of perturbations, a robust infinite horizon filtering problem is first formulated as a constrained optimization problem before being transformed via variational results into an unconstrained optimization problem; the latter can be elegantly solved using a risk-sensitive information-state based filtering.
Resumo:
A time series method for the determination of combustion chamber resonant frequencies is outlined. This technique employs the use of Markov-chain Monte Carlo (MCMC) to infer parameters in a chosen model of the data. The development of the model is included and the resonant frequency is characterised as a function of time. Potential applications for cycle-by-cycle analysis are discussed and the bulk temperature of the gas and the trapped mass in the combustion chamber are evaluated as a function of time from resonant frequency information.
Resumo:
Emergency Health Services (EHS), encompassing hospital-based Emergency Departments (ED) and pre-hospital ambulance services, are a significant and high profile component of Australia’s health care system and congestion of these, evidenced by physical overcrowding and prolonged waiting times, is causing considerable community and professional concern. This concern relates not only to Australia’s capacity to manage daily health emergencies but also the ability to respond to major incidents and disasters. EHS congestion is a result of the combined effects of increased demand for emergency care, increased complexity of acute health care, and blocked access to ongoing care (e.g. inpatient beds). Despite this conceptual understanding there is a lack of robust evidence to explain the factors driving increased demand, or how demand contributes to congestion, and therefore public policy responses have relied upon limited or unsound information. The Emergency Health Services Queensland (EHSQ) research program proposes to determine the factors influencing the growing demand for emergency health care and to establish options for alternative service provision that may safely meet patient’s needs. The EHSQ study is funded by the Australian Research Council (ARC) through its Linkage Program and is supported financially by the Queensland Ambulance Service (QAS). This monograph is part of a suite of publications based on the research findings that examines the existing literature, and current operational context. Literature was sourced using standard search approaches and a range of databases as well as a selection of articles cited in the reviewed literature. Public sources including the Australian Institute of Health and Welfare (AIHW), the Council of Ambulance Authorities (CAA) Annual Reports, Australian Bureau of Statistics (ABS) and Department of Health and Ageing (DoHA) were examined for trend data across Australia.
Resumo:
Language Modeling (LM) has been successfully applied to Information Retrieval (IR). However, most of the existing LM approaches only rely on term occurrences in documents, queries and document collections. In traditional unigram based models, terms (or words) are usually considered to be independent. In some recent studies, dependence models have been proposed to incorporate term relationships into LM, so that links can be created between words in the same sentence, and term relationships (e.g. synonymy) can be used to expand the document model. In this study, we further extend this family of dependence models in the following two ways: (1) Term relationships are used to expand query model instead of document model, so that query expansion process can be naturally implemented; (2) We exploit more sophisticated inferential relationships extracted with Information Flow (IF). Information flow relationships are not simply pairwise term relationships as those used in previous studies, but are between a set of terms and another term. They allow for context-dependent query expansion. Our experiments conducted on TREC collections show that we can obtain large and significant improvements with our approach. This study shows that LM is an appropriate framework to implement effective query expansion.
Resumo:
Computational fluid dynamics (CFD) models for ultrahigh velocity waterjets and abrasive waterjets (AWJs) are established using the Fluent 6 flow solver. Jet dynamic characteristics for the flow downstream from a very fine nozzle are then simulated under steady state, turbulent, two-phase and three-phase flow conditions. Water and particle velocities in a jet are obtained under different input and boundary conditions to provide an insight into the jet characteristics and a fundamental understanding of the kerf formation process in AWJ cutting. For the range of downstream distances considered, the results indicate that a jet is characterised by an initial rapid decay of the axial velocity at the jet centre while the cross-sectional flow evolves towards a top-hat profile downstream.
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.