913 resultados para component alignment
Resumo:
Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle-dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s).
Resumo:
In this work, multi-component white cast iron was applied by HVOF thermal spray process as alternative to other manufacture processes. Effects of substrate type, substrate pre-heating and heat treatment of coating on mass loss have been determined by rubber wheel apparatus in accordance with ASTM G-65. Furthermore, influence of heat treatment of coating on wear mechanisms was also determined by scanning electron microscopy analysis. Heat-treated coatings presented mass loss three times lower than as-sprayed coatings. Furthermore, wear mechanisms of as-sprayed coating are micro-cutting associated with cracks close to unmelted particles and pores. In heat-treated coating, lesser mass loss is due to sintering. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Accurate alignment of a toric intraocular lens (IOL) is a requisite to achieving the intended reduction in astigmatism at the time of cataract surgery. However, it requires a reasonably clear view of the limbal vascular anatomy, which is sometimes altered by chemosis from a subconjunctival anesthetic injection or a hemorrhage. We describe a technique that can quickly restore vascular anatomy and facilitate toric IOL alignment.
Resumo:
Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous gamma H2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the alpha-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-alpha primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.
Resumo:
The aim of the present study was to investigate the association between the patellofemoral pain syndrome and the clinical static measurements: the rearfoot and the Q angles. The design was a cross-sectional, observational, case-control study. We evaluated 77 adults (both genders), 30 participants with patellofemoral pain syndrome, and 47 controls. We measured the rearfoot and Q angles by photogrammetry. Independent t-tests were used to compare outcome continuous measures between groups. Outcome continuous data were also transformed into categorical clinical classifications, in order to verify their statistical association with the dysfunction, and χ2 tests for multiple responses were used. There were no differences between groups for rearfoot angle [mean differences: 0.2º (95%CI -1.4-1.8)] and Q angle [mean differences: -0.3º (95%CI -3.0-2.4). No associations were found between increased rearfoot valgus [Odds Ratio: 1.29 (95%CI 0.51-3.25)], as well as increased Q angle [Odds Ratio: 0.77 (95%CI 0.31-1.93)] and the patellofemoral pain syndrome occurrence. Although widely used in clinical practice and theoretically thought, it cannot be affirmed that increased rearfoot valgus and increased Q angle, when statically measured in relaxed stance, are associated with patellofemoral pain syndrome (PFPS). These measures may have limited applicability in screening of the PFPS development.
Resumo:
This study aimed to map phytophysiognomies of an area of Ombrophilous Dense Forest at Parque Estadual da Serra do Mar and characterize their floristic composition. Photointerpretation of aerial photographs in scale of 1:35,000 was realized in association with field work. Thirteen physiognomies were mapped and they were classified as Montane Ombrophilous Dense Forest, Alluvial Ombrophilous Dense Forest or Secondary System. Three physiognomies identified at Casa de Pedra streamlet's basin were studied with more details. Riparian forest (RF), valley forest (VF), and hill forest (HF) presented some floristic distinction, as confirmed by Detrended Correspondence Analysis (DCA) and Indicator Species Analysis (ISA) conducted here. Anthropic or natural disturbances and heterogeneity of environmental conditions may be the causes of physiognomic variation in the vegetation of the region. The results presented here may be useful to decisions related to management and conservation of Núcleo Santa Virgínia forests, in general.
Resumo:
The cellular rheology has recently undergone a rapid development with particular attention to the cytoskeleton mechanical properties and its main components - actin filaments, intermediate filaments, microtubules and crosslinked proteins. However it is not clear what are the cellular structural changes that directly affect the cell mechanical properties. Thus, in this work, we aimed to quantify the structural rearrangement of these fibers that may emerge in changes in the cell mechanics. We created an image analysis platform to study smooth muscle cells from different arteries: aorta, mammary, renal, carotid and coronary and processed respectively 31, 29, 31, 30 and 35 cell image obtained by confocal microscopy. The platform was developed in Matlab (MathWorks) and it uses the Sobel operator to determine the actin fiber image orientation of the cell, labeled with phalloidin. The Sobel operator is used as a filter capable of calculating the pixel brightness gradient, point to point, in the image. The operator uses vertical and horizontal convolution kernels to calculate the magnitude and the angle of the pixel intensity gradient. The image analysis followed the sequence: (1) opens a given cells image set to be processed; (2) sets a fix threshold to eliminate noise, based on Otsu's method; (3) detect the fiber edges in the image using the Sobel operator; and (4) quantify the actin fiber orientation. Our first result is the probability distribution II(Δθ) to find a given fiber angle deviation (Δθ) from the main cell fiber orientation θ0. The II(Δθ) follows an exponential decay II(Δθ) = Aexp(-αΔθ) regarding to its θ0. We defined and determined a misalignment index α of the fibers of each artery kind: coronary αCo = (1.72 ‘+ or =’ 0.36)rad POT -1; renal αRe = (1.43 + or - 0.64)rad POT -1; aorta αAo = (1.42 + or - 0.43)rad POT -1; mammary αMa = (1.12 + or - 0.50)rad POT -1; and carotid αCa = (1.01 + or - 0.39)rad POT -1. The α of coronary and carotid are statistically different (p < 0.05) among all analyzed cells. We discussed our results correlating the misalignment index data with the experimental cell mechanical properties obtained by using Optical Magnetic Twisting Cytometry with the same group of cells.
Resumo:
[EN] Programming software for controlling robotic systems in order to built working systems that perform adequately according to their design requirements remains being a task that requires an important development effort. Currently, there are no clear programming paradigms for programming robotic systems, and the programming techniques which are of common use today are not adequate to deal with the complexity associated with these systems. The work presented in this document describes a programming tool, concretely a framework, that must be considered as a first step to devise a tool for dealing with the complexity present in robotics systems. In this framework the software that controls a system is viewed as a dynamic network of units of execution inter-connected by means of data paths. Each one of these units of execution, called a component, is a port automaton which provides a given functionality, hidden behind an external interface specifying clearly which data it needs and which data it produces. Components, once defined and built, may be instantiated, integrated and used as many times as needed in other systems. The framework provides the infrastructure necessary to support this concept for components and the inter communication between them by means of data paths (port connections) which can be established and de-established dynamically. Moreover, and considering that the more robust components that conform a system are, the more robust the system is, the framework provides the necessary infrastructure to control and monitor the components than integrate a system at any given instant of time.
Resumo:
[ES] Uno de los cinco componentes de la arquitectura triskel, una base de datos NoSQL que trata de dar solución al problema de Big data de la web semántica, el gran número de identificadores de recursos que se necesitarían debido al creciente número de sitios web, concretamente el motor de gestión de ejecución de patrones basados en tripletas y en la tecnología RDF. Se encarga de recoger la petición de consulta por parte del intérprete, analizar los patrones que intervienen en la consulta en busca de dependencias explotables entre ellos, y así poder realizar la consulta con mayor rapidez además de ir resolviendo los diferentes patrones contra el almacenamiento, un TripleStore, y devolver el resultado de la petición en una tabla.
Resumo:
[ES] SPARQL Interpreter es uno de los cinco componentes de la Arquitectura Triskel, una arquitectura de software para una base de datos NoSQL que intenta aportar una solución al problema de Big Data en la web semántica. Este componente da solución al problema de la comunicación entre el lenguaje y el motor, interpretando las consultas que se realicen contra el almacenamiento en lenguaje SPARQL y generando una estructura de datos que los componentes inferiores puedan leer y ejecutar.
Resumo:
Total ankle arthroplasty (TAA) is still not as satisfactory as total hip and total knee arthroplasty. For the TAA to be considered a valuable alternative to ankle arthrodesis, an effective range of ankle mobility must be recovered. The disappointing clinical results of the current generation of TAA are mostly related to poor understanding of the structures guiding ankle joint mobility. A new design (BOX Ankle) has been developed, uniquely able to restore physiologic ankle mobility and a natural relationship between the implanted components and the retained ligaments. For the first time the shapes of the tibial and talar components in the sagittal plane were designed to be compatible with the demonstrated ligament isometric rotation. This resulted in an unique motion at the replaced ankle where natural sliding as well as rolling motion occurs while at the same time full conformity is maintained between the three components throughout the flexion arc. According to prior research, the design features a spherical convex tibial component, a talar component with radius of curvature in the sagittal plane longer than that of the natural talus, and a fully conforming meniscal component. After computer-based modelling and preliminary observations in several trial implantation in specimens, 126 patients were implanted in the period July 2003 – December 2008. 75 patients with at least 6 months follow-up are here reported. Mean age was 62,6 years (range 22 – 80), mean follow-up 20,2 months. The AOFAS clinical score systems were used to assess patient outcome. Radiographs at maximal dorsiflexion and maximal plantar flexion confirmed the meniscalbearing component moves anteriorly during dorsiflexion and posteriorly during plantarflexion. Frontal and lateral radiographs in the patients, show good alignment of the components, and no signs of radiolucency or loosening. The mean AOFAS score was observed to go from 41 pre-op to 74,6 at 6 month follow-up, with further improvement at the following follow-up. These early results reveal satisfactory clinical scores, with good recovery of range of motion and reduction of pain. Radiographic assessment reveals good osteointegration. All these preliminary results confirm biomechanical studies and the validity of this novel ligamentcompatible prosthesis design. Surely it will be important to re-evaluate these patients later.
Resumo:
Liquid Crystal Polymer Brushes and their Application as Alignment Layers in Liquid Crystal Cells Polymer brushes with liquid crystalline (LC) side chains were synthesized on planar glass substrates and their nematic textures were investigated. The LC polymers consist of an acrylate or a methacrylate main chain and a phenyl benzoate group as the mesogenic unit which is connected to the main chain via a flexible alkyl spacer composed of six CH2 units. The preparation of the LC polymer brushes was carried out according to the grafting from technique: polymerization is carried out from azo-initiators that have been previously self-assembled on the substrate. LC polymer brushes with a thickness from a few nm to 230 nm were synthesized by varying the monomer concentration and the polymerization time. The LC polymer brushes were thick enough to allow for direct observation of the nematic textures with a polarizing microscope. The LC polymer brushes grown on untreated glass substrates exhibited irregular textures (polydomains). The domain size is in the range of some micrometers and depends only weakly on the brush thickness. The investigations on the texture-temperature relationship of the LC brushes revealed that the brushes exhibit a surface memory effect, that is, the identical texture reappears after the LC brush sample has experienced a thermal isotropization or a solvent treatment, at which the nematic LC state has been completely destroyed. The surface memory effect is attributed to a strong anchoring of the orientation of the mesogenic units to heterogeneities at the substrate surface. The exact nature of the surface heterogeneities is unknown. The effect was observed for the LC brushes swollen with low molecular weight nematic molecules, as well. Rubbing the glass substrate with a piece of velvet cloth prior to the surface modification with the initiator and the brush growth gives rise to the formation of homogenous alignment of the mesogenic units in the LC polymer side chains. Monodomain textures were obtained for these LC brushes. The mechanism for the homogeneous alignment is based on the transfer of Nylon fibers during the rubbing process. A surfactant was mixed with the azo-initiator in modifying rubbed substrates for subsequent brush generation. Such brushes exhibited biaxial optical properties. Hybrid LC cells made from a substrate modified with biaxial brushes and a rubbed glass substrate show an orientation with a tilt angle of a = 15.6 . This work shows that LC brushes grown on rubbed surfaces fulfill the important criteria for alignment layers: the formation of macroscopic monodomains. First results indicate that by diluting the brush with molecules which are also covalently bound to the surface but induce a different orientation, a system is obtained in which the two conflicting alignment mechanisms can be used to generate a tilted alignment. In order to allow for an application of the alignment layers into a potential product, subsequent work should focus on the questions how easy and in which range the tilt angle can be controlled.
Resumo:
An important property for devices is the charge-carrier mobility values for discotic organic materials like hexa-peri-hexabenzocoronenes. A close relation exists between the degree of their columnar self-arrangement of the molecules and their mobilities. Within this first step an induction of a higher order via hydrogen-bonding was considered, which mainly pointed towards the improvement of the intracolumnar stacking of the materials. For the analytics a broad range of methods was used including differential scanning calorimetry (DSC), wide-angle X-ray diffractometry (WAXS), solid-state NMR spectroscopy and scanning tunneling microscopy (STM). Indeed, a specific influence of the hydrogen-bonds could be identified, although in several cases by the cost of a severe reduction of solubility and processability. This effect was dampened by the addition of a long alkyl chain next to the hydrogen-bond exerting functional group, which resulted in an improved columnar arrangement by retention of processability. In contrast to the before mentioned example of inducing a higher intracolumnar order by hydrogen-bonding, the focus was also be set upon larger aromatic systems. The charge-carrier mobility is also in close relation to the size of the aromatic core and larger π-areas are expected to lead to improved mobilities. For photovoltaic applications a high extinction coefficient over a broad range of the spectrum is favorable, which can also be achieved by enlarging the aromatic core component. In addition the stronger π-interactions between the aromatic core components should yield an improved columnar stability and order. However the strengthening of the π-interactions between the aromatic core components led to a reduction of the solubility and the processability due to the stronger aggregation of the molecules. This required the introduction of efficiently solubilizing features in terms of long alkyl chains in the corona of the aromatic entity, in combination of a distortion of the aromatic core moiety by bulky tert-butyl groups. By this approach not only the processing and cleaning of the materials with standard laboratory techniques became possible, but moreover the first structure-rich UV/vis and a resolved 1H-NMR spectra for an aromatic system two times larger than hexa-peri-hexabenzocoronene were recorded. The bulk properties in an extruded fiber as well as on the surface showed a columnar self-assembly including a phase in which a homeotropic alignment on a substrate was observed, which turns the material into an interesting candidate for future applications in electronic devices.
13C NMR of a single molecule magnet: analysis of pseudocontact shifts and residual dipolar couplings
Resumo:
Paramagnetic triple decker complexes of lanthanides are promising Single Molecule Magnets (SMMs), with many potential uses. Some of them show preferable relaxation behavior, which enables the recording of well resolved NMR spectra. These axially symmetric complexes are also strongly magnetically anisotropic, and this property can be described with the axial component of the magnetic susceptibility tensor, χa. For triple decker complexes with phthalocyanine based ligands, the Fermi˗contact contribution is small. Hence, together with the axial symmetry, the experimental chemical shifts in 1H and 13C NMR spectra can be modeled easily by considering pseudocontact and orbital shifts alone. This results in the determination of the χa value, which is also responsible for molecular alignment and consequently for the observation of residual dipolar couplings (RDCs). A detailed analysis of the experimental 1H-13C and 1H-1H couplings revealed that contributions from RDCs (positive and negative) and from dynamic frequency shifts (negative for all observed couplings) have to be considered. Whilst the pseudocontact shifts depend on the average positions of 1H and 13C nuclei relative to the lanthanide ions, the RDCs are related to the mobility of nuclei they correspond to. This phenomenon allows for the measurement of the internal mobility of the various groups in the SMMs.