971 resultados para competitive interactions
Resumo:
The natural mortality rate (M) of fish varies with size and age, although it is often assumed to be constant in stock assessments. Misspecification of M may bias important assessment quantities. We simulated fishery data, using an age-based population model, and then conducted stock assessments on the simulated data. Results were compared to known values. Misspecification of M had a negligible effect on the estimation of relative stock depletion; however, misspecification of M had a large effect on the estimation of parameters describing the stock recruitment relationship, age-specific selectivity, and catchability. If high M occurs in juvenile and old fish, but is misspecified in the assessment model, virgin biomass and catchability are often poorly estimated. In addition, stock recruitment relationships are often very difficult to estimate, and steepness values are commonly estimated at the upper bound (1.0) and overfishing limits tend to be biased low. Natural mortality can be estimated in assessment models if M is constant across ages or if selectivity is asymptotic. However if M is higher in old fish and selectivity is dome-shaped, M and the selectivity cannot both be adequately estimated because of strong interactions between M and selectivity.
Resumo:
Lipids are essential constituents of contemporary living cells, serving as structural molecules that are necessary to form membranous compartments. Amphiphilic lipid-like molecules may also have contributed to prebiotic chemical evolution by promoting the synthesis, aggregation and cooperative encapsulation of other biomolecules. The resulting compartments would allow systems of molecules to be maintained that represent microscopic experiments in a natural version of combinatorial chemistry. Here we address these possibilities and describe recent results related to interactions between amphiphiles and other biomolecules during early evolution toward the first living cells.
Resumo:
We investigated estuarine spatial and temporal overlap of wild and marked hatchery chum salmon (Oncorhynchus keta) fry; the latter included two distinct size groups released near the Taku River estuary (Taku Inlet) in Southeast Alaska (early May releases of ~ 1.9 g and late May releases of ~ 3.9 g wet weight). Our objectives were to compare abundance, body size, and condition of wild chum salmon fry and hatchery chum salmon fry raised under early and late rearing strategies in different habitats of Taku Inlet and to document environmental factors that could potentially explain the distribution, size, and abundance of these chum salmon fr y. We used a sampling design stratified into inner and outer inlet and neritic and littoral habitats. Hatchery fry were rare in the inner estuary in both years but outnumbered wild fry 20:1 in the outer estuary. Hatchery fry were significantly larger than wild fry in both littoral and neritic samples. Abundances of wild and hatchery fry were positively correlated in the outer inlet, indicating the formation of mixed schools of hatchery and wild fry. Spatial and temporal overlap was greatest between wild and early hatchery fry in the outer inlet in both habitats. The early hatchery release coincided with peak abundances of wild fry in the outer inlet, and the distribution of wild and early hatchery fry overlapped for about three weeks. Our results demonstrate that the timing of release of hatchery fry may affect interactions with wild fry.
Resumo:
The U.S. East Coast pelagic longline fishery has a history of interactions with marine mammals, where animals are hooked and entangled in longline gear. Pilot whales (Globicephala spp.) and Risso’s dolphin (Grampus griseus) are the primary species that interact with longline gear. Logistic regression was used to assess the environmental and gear characteristics that influence interaction rates. Pilot whale inter-actions were correlated with warm water temperatures, proximity to the shelf break, mainline lengths greater than 20 nautical miles, and damage to swordfish catch. Similarly, Risso’s dolphin interactions were correlated with geographic location, proximity the shelf break, the length of the mainline, and bait type. The incidental bycatch of marine mammals is likely associated with depredation of the commercial catch and is increased by the overlap between marine mammal and target species habitats. Altering gear characteristics and fishery practices may mitigate incidental bycatch and reduce economic losses due to depredation.
Resumo:
MP2/aug-cc-pVTZ calculations were performed on complexes of aluminium and boron trihydrides and trihalides with acetylene and ethylene. These complexes are linked through triel bonds where the triel center (B or Al) is characterized by the Lewis acid properties through its -hole region while -electrons of C2H2 or C2H4 molecule play the role of the Lewis base. Some of these interactions possess characteristics of covalent bonds, i.e., the Al--electrons links as well as the interaction in the BH3-C2H2 complex. The triel--electrons interactions are classified sometimes as the 3c-2e bonds. In the case of boron trihydrides, these interactions are often the preliminary stages of the hydroboration reaction. The Quantum Theory of Atoms in Molecules as well as the Natural Bond Orbitals approach are applied here to characterize the -hole--electrons interactions.
Resumo:
Survey- and fishery-derived biomass estimates have indicated that the harvest indices for Pacific cod (Gadus macrocephalus) within a portion of Steller sea lion (Eumetopias jubatus) critical habitat in February and March 2001 were five to 16 times greater than the annual rate for the entire Bering Sea-Aleutian Islands stock. A bottom trawl survey yielded a cod biomass estimate of 49,032 metric tons (t) for the entire area surveyed, of which less than half (23,329 t) was located within the area used primarily by the commercial fishery, which caught 11,631 t of Pacific cod. Leslie depletion analyses of fishery data yielded biomass estimates of approximately 14,500 t (95% confidence intervals of approximately 9,000–25,000 t), which are within the 95% confidence interval on the fished area survey estimate (12,846–33,812 t). These data indicate that Leslie analyses may be useful in estimating local fish biomass and harvest indices for certain marine fisheries that are well constrained spatially and relatively short in duration (weeks). In addition, fishery effects on prey availability within the time and space scales relevant to foraging sea lions may be much greater than the effects indicated by annual harvest rates estimated from stock assessments averaged across the range of the target spec