991 resultados para code source
Resumo:
This work presents, from the perspective of a freelancer professional, a case study of a practical and real implementation of an Open Source ERP software suite to a very small company, including the development of a custom software module to adapt the suite to the particular needs of the company.
Resumo:
Peer-reviewed
Resumo:
Aquesta memòria descriu la preparació, l'execució i els resultats obtinguts d'implementar un sistema calculador de rutes. El projecte Open Source Routing Machine és un motor calculador de rutes d'alt rendiment que utilitza les dades de OpenStreetMaps per calcular el camí més curt entre dos punts. En aquest projecte final no únicament es volen utilitzar les dades OpenStreetMap sinó que també es pretenen utilitzar dades pròpies en format shapefile i poder visualitzar-los en un visor web. Aquest visor permet a l'usuari, de forma senzilla, sol•licitar rutes al servidor OSRM creat, obtenint la ruta desitjada en molt pocs milisegons
Resumo:
Soitinnus: Piano.
Resumo:
In this paper we review the basic techniques of performance analysis within the UNIX environment that are relevant in computational chemistry, with particular emphasis on the execution profile using the gprof tool. Two case studies (in ab initio and molecular dynamics calculations) are presented in order to illustrate how execution profiling can be used to effectively identify bottlenecks and to guide source code optimization. Using these profiling and optimization techniques it was possible to obtain significant speedups (of up to 30%) in both cases.
Resumo:
The purpose of gamma spectrometry and gamma and X-ray tomography of nuclear fuel is to determine both radionuclide concentration and integrity and deformation of nuclear fuel. The aims of this thesis have been to find out the basics of gamma spectrometry and tomography of nuclear fuel, to find out the operational mechanisms of gamma spectrometry and tomography equipment of nuclear fuel, and to identify problems that relate to these measurement techniques. In gamma spectrometry of nuclear fuel the gamma-ray flux emitted from unstable isotopes is measured using high-resolution gamma-ray spectroscopy. The production of unstable isotopes correlates with various physical fuel parameters. In gamma emission tomography the gamma-ray spectrum of irradiated nuclear fuel is recorded for several projections. In X-ray transmission tomography of nuclear fuel a radiation source emits a beam and the intensity, attenuated by the nuclear fuel, is registered by the detectors placed opposite. When gamma emission or X-ray transmission measurements are combined with tomographic image reconstruction methods, it is possible to create sectional images of the interior of nuclear fuel. MODHERATO is a computer code that simulates the operation of radioscopic or tomographic devices and it is used to predict and optimise the performance of imaging systems. Related to the X-ray tomography, MODHERATO simulations have been performed by the author. Gamma spectrometry and gamma and X-ray tomography are promising non-destructive examination methods for understanding fuel behaviour under normal, transient and accident conditions.
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.
Resumo:
In the context of the evidence-based practices movement, the emphasis on computing effect sizes and combining them via meta-analysis does not preclude the demonstration of functional relations. For the latter aim, we propose to augment the visual analysis to add consistency to the decisions made on the existence of a functional relation without losing sight of the need for a methodological evaluation of what stimuli and reinforcement or punishment are used to control the behavior. Four options for quantification are reviewed, illustrated, and tested with simulated data. These quantifications include comparing the projected baseline with the actual treatment measurements, on the basis of either parametric or nonparametric statistics. The simulated data used to test the quantifications include nine data patterns in terms of the presence and type of effect and comprising ABAB and multiple baseline designs. Although none of the techniques is completely flawless in terms of detecting a functional relation only when it is present but not when it is absent, an option based on projecting split-middle trend and considering data variability as in exploratory data analysis proves to be the best performer for most data patterns. We suggest that the information on whether a functional relation has been demonstrated should be included in meta-analyses. It is also possible to use as a weight the inverse of the data variability measure used in the quantification for assessing the functional relation. We offer an easy to use code for open-source software for implementing some of the quantifications.
Resumo:
The behavior of the nuclear power plants must be known in all operational situations. Thermal hydraulics computer applications are used to simulate the behavior of the plants. The computer applications must be validated before they can be used reliably. The simulation results are compared against the experimental results. In this thesis a model of the PWR PACTEL steam generator was prepared with the TRAC/RELAP Advanced Computational Engine computer application. The simulation results can be compared against the results of the Advanced Process Simulator analysis software in future. Development of the model of the PWR PACTEL vertical steam generator is introduced in this thesis. Loss of feedwater transient simulation examples were carried out with the model.
Resumo:
Carotenoids are natural dyes synthesized by plants, algae and microorganisms. Application in many sectors can be found, as food dyeing and supplementation, pharmaceuticals, cosmetics and animal feed. Recent investigations have shown their ability to reduce the risks for many degenerative diseases like cancer, heart diseases, cataract and macular degeneration. An advantage of microbial carotenoids is the fact that the cultivation in controlled conditions is not dependent of climate, season or soil composition. In this review the advances in bio-production of carotenoids are presented, discussing the main factors that influence the microbial production of these dyes in different systems.
Resumo:
The essential oils from leaves, stems and fruits of Piper divaricatum were analyzed by GC-MS. The tissues showed high safrole content: leaves (98%), fruits (87%) and stems (83%), with yields of 2.0, 4.8 and 1.7%, respectively. This is a new alternative source of safrole, a compound widely used as a flavoring agent and insecticide. The leaf's oil showed antibacterial activity against gram-negative bacteria while safrole was active against Salmonella Typhimurium and Pseudomonas aeruginosa. In addition, the study of circadian rhythm of the safrole concentration in the essential oils of leaves showed a negligible variation of 92 to 98%.
Resumo:
The use of natural products has definitely been the most successful strategy in the discovery of novel medicines. Secondary metabolites from terrestrial and marine organisms have found considerable use in the treatment of numerous diseases and have been considered lead molecules both in their natural form and as templates for medicinal chemistry. This paper seeks to show the great value of secondary metabolites and emphasize the rich chemical diversity of Brazilian biodiversity. This natural chemical library remains understudied, but can be a useful source of new secondary metabolites with potential application as templates for drug discovery.
Resumo:
QSAR modeling is a novel computer program developed to generate and validate QSAR or QSPR (quantitative structure- activity or property relationships) models. With QSAR modeling, users can build partial least squares (PLS) regression models, perform variable selection with the ordered predictors selection (OPS) algorithm, and validate models by using y-randomization and leave-N-out cross validation. An additional new feature is outlier detection carried out by simultaneous comparison of sample leverage with the respective Studentized residuals. The program was developed using Java version 6, and runs on any operating system that supports Java Runtime Environment version 6. The use of the program is illustrated. This program is available for download at lqta.iqm.unicamp.br.
Resumo:
Analysis of the volatile fraction of Aristolochia trilobata stem led to the identification of 6-methyl-5-hepten-2-yl acetate (23.31 ± 0.28%), limonene (15.43 ± 0.030%), linalool (8.70 ± 0.29%), p-cymene (7.81 ± 0.12%), bicyclogermacrene (4.21 ± 0.11%), and spathulenol (4.17 ± 0.14%) as the major constituents of the essential oil. Linalool (29.51 ± 0.49%), 6-methyl-5-hepten-2-ol (19.54 ± 0.82%), 6-methyl-5-hepten-2-yl acetate (8.92 ± 0.16%), and a-terpineol (4.62 ± 0.05%) were identified as major constituents of the hydrolate. The compound 6-methyl-5-hepten-2-yl acetate was isolated for the first time from this plant and was identified as the major component of the volatile fraction.