901 resultados para climate-change impacts
Resumo:
It is thought that direct personal experience of extreme weather events could result in greater public engagement and policy response to climate change. Based on this premise, we present a set of future climate scenarios for Ireland communicated in the context of recent, observed extremes. Specifically, we examine the changing likelihood of extreme seasonal conditions in the long-term observational record, and explore how frequently such extremes might occur in a changed Irish climate according to the latest model projections. Over the period (1900-2014) records suggest a greater than 50-fold increase in the likelihood of the warmest recorded summer (1995), whilst the likelihood of the wettest winter (1994/95) and driest summer (1995) has respectively doubled since 1850. The most severe end-of-century climate model projections suggest that summers as cool as 1995 may only occur once every ∼7 years, whilst winters as wet as 1994/95 and summers as dry as 1995 may increase by factors of ∼8 and ∼10 respectively. Contrary to previous research, we find no evidence for increased wintertime storminess as the Irish climate warms, but caution that this conclusion may be an artefact of the metric employed. It is hoped that framing future climate scenarios in the context of extremes from living memory will help communicate the scale of the challenge climate change presents, and in so doing bridge the gap between climate scientists and wider society.
Resumo:
This paper presents the first continuous pollen record from the southern Namib Desert spanning the last 50,000 years. Obtained from rock hyrax middens found near the town of Pella, South Africa, these data are used to reconstruct vegetation change and quantitative estimates of temperature and aridity. Results indicate that the last glacial period was characterised by increased water availability at the site relative to the Holocene. Changes in temperature and potential evapotranspiration appear to have played a significant role in determining the hydrologic balance. The record can be considered in two sections: 1) the last glacial period, when low temperatures favoured the development of more mesic Nama-Karoo vegetation at the site, with periods of increased humidity concurrent with increased coastal upwelling, both responding to lower global/regional temperatures; and 2) the Holocene, during which time high temperatures and potential evapotranspiration resulted in increased aridity and an expansion of the Desert Biome. During this latter
period, increases in upwelling intensity created drier conditions at the site.
Considered in the context of discussions of forcing mechanisms of regional climate change and environmental dynamics, the results from Pella stand in clear contrast with many inferences of terrestrial environmental change derived from regional marine records. Observations of a strong precessional signal and interpretations of increased humidity during phases of high local summer insolation in the marine records are not consistent with the data from Pella. Similarly, while high percentages of Restionaceae pollen has been observed in marine sediments during the last glacial period, they do not exceed 1% of the assemblage from Pella, indicating that no significant expansion of the Fynbos Biome has occurred during the last 50,000 years. These findings pose interesting questions regarding the nature of environmental change in southwestern Africa, and the significance of the diverse records that have been obtained from the region.
Resumo:
1. We analysed 41 years of data (1968–2008) from Blelham Tarn, U.K., to determine the consequences of eutrophication and climate warming on hypolimnetic dissolved oxygen (DO).
2. The establishment of thermal stratification was strongly related to the onset of DO depletion in the lower hypolimnion. As a result of a progressively earlier onset of stratification and later overturn, the duration of stratification increased by 38 ± 8 days over the 41 years.
3. The observed rate of volumetric hypolimnetic oxygen depletion (VHODobs) ranged from 0.131 to 0.252 g O2 m−3 per day and decreased significantly over the study period, despite the increase in the mean chlorophyll a (Chl a) concentration in the growing season. The vertical transport of DO represented from 0 to 30% of VHODobs, while adjustments for interannual differences in hypolimnetic temperature were less important, ranging from −11 to 9% of VHODobs.
4. The mean wind speed during May made the strongest significant contribution to the variation in VHODobs. VHODobs adjusted for the vertical transport of DO and hypolimnetic temperature differences, VHODadj, was significantly related to the upper mixed layer Chl a concentration during spring.
5. Hypolimnetic anoxia (HA) ranged from 27 to 168 days per year and increased significantly over time, which undoubtedly had negative ecological consequences for the lake.
6. In similar small temperate lakes, the negative effects of eutrophication on hypolimnetic DO are likely to be exacerbated by changes in lake thermal structure brought about by a warming climate, which may undermine management efforts to alleviate the effects of anthropogenic eutrophication.
Resumo:
It is predicted that climate change will result in rising sea levels, more frequent and extreme weather events, hotter and drier summers and warmer and wetter winters. This will have a significant impact on the design of buildings, how they are kept cool and how they are weathered against more extreme climatic conditions. The residential sector is already a significant environmental burden with high associated operational energy. Climate change, and a growing population requiring residence, has the potential to exacerbate this problem seriously. New paradigms for residential building design are required to enable low-carbon dioxide operation to mitigate climate change. They must also face the reality of inevitable climate change and adopt climate change adaptation strategies to cope with future scenarios. However, any climate adaptation strategy for dwellings must also be cognisant of adapting occupant needs, influenced by ageing populations and new technologies. This paper presents concepts and priorities for changing how society designs residential buildings by designing for adaptation. A case study home is analysed in the context of its stated aims of low energy and adaptability. A post-occupancy evaluation of the house is presented, and future-proofing strategies are evaluated using climate projection data for future climate change scenarios.
Resumo:
Climate changes are foreseen to produce a large impact in the morphology of estuaries and coastal systems. The morphology changes will subsequently drive changes in the biologic compartments of the systems and ultimately in their ecosystems. Sea level rise is one of the main factors controlling these changes. Morphologic changes can be better understood with the use of long term morphodynamic mathematical models.
Resumo:
Background: Artemisia species pollen represents a major cause of allergy in Central Europe. Variations in the pollen season, the influence of climate variables and the prevalence of pollinosis to it were analyzed in Poznan, in western Poland between 1995 and 2004. Methods: A Hirst volumetric spore trap was used for atmospheric sampling. Pollination date trend analysis and Spearman correlation tests were performed. Skin prick tests (SPT) and allergen specific immunoglobulin (Ig)E antibody measurements were performed in 676 and 524 patients, respectively. Results: The Artemisia species pollen season grew longer due to a clear advance in the starting day and only a slightly earlier end point; the peak day also came slightly earlier. Rainfall in the fi rst fortnight of July highly influenced pollen season severity. Temperature was directly correlated with daily Artemisia species pollen levels; relative humidity was inversely correlated. Twelve percent of patients had a positive SPT reaction to Artemisia species. Their symptoms were rhinitis and conjunctivitis (15%), atopic dermatitis (15%), chronic urticaria (14.3%), bronchial asthma (2.4%), and facial and disseminated dermatitis (1.3%). Elevated specifi c IgE concentrations were detected in the sera of 10.1% of patients. Conclusions: Artemisia species pollen is an important cause of pollinosis in western Poland. Pollen season intensity is highly influenced by rainfall in the previous weeks. Trends towards earlier season starts and longer duration, possibly caused by climate change, may have an impact on the allergic population.
Resumo:
In light of heightened interest in the response of pollen phenology to temperature, we investigated recent changes to the onset of Betula (birch) pollen seasons in central and southern England, including a test of predicted advancement of the Betula pollen season for London. We calculated onset of birch pollen seasons using daily airborne pollen data obtained at London, Plymouth and Worcester, determined trends in the start of the pollen season and compared timing of the birch pollen season with observed temperature patterns for the period 1995–2010. We found no overall change in the onset of birch pollen in the study period although there was evidence that the response to temperature was nonlinear and that a lower asymptotic start of the pollen season may exist. The start of the birch pollen season was strongly correlated with March mean temperature. These results reinforce previous findings showing that the timing of the birch pollen season in the UK is particularly sensitive to spring temperatures. The climate relationship shown here persists over both longer decadal-scale trends and shorter, seasonal trends as well as during periods of ‘sign-switching’ when cooler spring temperatures result in later start dates. These attributes, combined with the wide geographical coverage of airborne pollen monitoring sites, some with records extending back several decades, provide a powerful tool for the detection of climate change impacts, although local site factors and the requirement for winter chilling may be confounding factors.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
The impact of climate change on fungal growth and spore production is less well documented than for allergenic pollen grains, although similar implications for respiratory tract diseases in humans occur. Fungal spores are commonly described as either “dry” or “wet” according to the type of weather associated with their occurrence in the air. This study examined the distribution of selected fungal spores (Alternaria spp., Cladosporium spp., Didymella spp., Epicoccum spp., Leptosphaeria spp. and rusts) occurring in the West Midlands of UK during 2 years of contrasting weather. Spore specimens were collected using a 7-day volumetric air sampler and then analysed with the aid of light microscopy. Distributions of spores were then studied using normality tests and Mann–Whitney U test, while relationships with meteorological parameters were investigated using Spearman’s rank test and angular-linear correlation for wind direction analysis. Our results showed that so-called wet spores were more sensitive to the weather changes showing statistically significant differences between the 2 years of study, in contrast to “dry” spores. We predict that in following years we will observe accelerated levels in allergenic fungal spore production as well as changes in species diversity. This study could be a starting point to revise the grouping system of fungal spores as either “dry” or “wet” types and their response to climate change
Resumo:
Tese de doutoramento, Ciências do Ambiente, Universidade de Lisboa, Faculdade de Ciências, Universidade Nova de Lisboa, 2015
Resumo:
Thesis (Master's)--University of Washington, 2015-12
Resumo:
Many actors—including scientists, journalists, artists, and campaigning organizations—create visualizations of climate change. In doing so, they evoke climate change in particular ways, and make the issue meaningful in everyday discourse. While a diversity of climate change imagery exists, particular types of climate imagery appear to have gained dominance, promoting particular ways of knowing about climate change (and marginalizing others). This imagery, and public engagement with this imagery, helps to shape the cultural politics of climate change in important ways. This article critically reviews the nascent research area of the visual representations of climate change, and public engagement with visual imagery. It synthesizes a diverse body of research to explore visual representations and engagement across the news media, NGO communications, advertising, and marketing, climate science, art, and virtual reality systems. The discussion brings together three themes which occur throughout the review: time, truth, and power. The article concludes by suggesting fruitful directions for future research in the visual communication of climate change.