947 resultados para chaotic and hyperchaotic rossler systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an underlay cognitive radio (CR) system, a secondary user can transmit when the primary is transmitting but is subject to tight constraints on the interference it causes to the primary receiver. Amplify-and-forward (AF) relaying is an effective technique that significantly improves the performance of a CR by providing an alternate path for the secondary transmitter's signal to reach the secondary receiver. We present and analyze a novel optimal relay gain adaptation policy (ORGAP) in which the relay is interference aware and optimally adapts both its gain and transmit power as a function of its local channel gains. ORGAP minimizes the symbol error probability at the secondary receiver subject to constraints on the average relay transmit power and on the average interference caused to the primary. It is different from ad hoc AF relaying policies and serves as a new and fundamental theoretical benchmark for relaying in an underlay CR. We also develop a near-optimal and simpler relay gain adaptation policy that is easy to implement. An extension to a multirelay scenario with selection is also developed. Our extensive numerical results for single and multiple relay systems quantify the power savings achieved over several ad hoc policies for both MPSK and MQAM constellations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores phase formation and phase stability in free nanoparticles of binary alloys. A procedure for estimating the size and composition dependent free energies incorporating the contributions from the interfaces has been presented. Both single phase solid solution and two phase morphology containing interphase interfaces have been considered. A free energy scenario has been evaluated for two binary alloy systems Ag-Ni and Ag-Cu to predict the microstructure of the alloy nanoparticles at different size ranges as a function of composition. Both Ag-Cu and Ag-Ni systems exhibit wide bulk immiscibility. Ag-Ni nanoparticles were synthesized using the wet chemical synthesis technique whereas Ag-Cu nanoparticles were synthesized using laser ablation of a Ag-Cu target immersed in distilled water. Microstructural and compositional characterization of Ag-Ni and Ag-Cu nanoparticles on a single nanoparticle level was conducted using transmission electron microscopy. Nanoparticle microstructures observed from the microscopic investigation have been correlated with thermodynamic calculation results. It is shown that the observed two phase microstructure consisting of Ag-Ni solid solution in partial decomposed state coexisting with pure Ag phases in the case of Ag-Ni nanoparticles can be only be rationalized by invoking the tendency for phase separation of an initial solid solution with increase in nanoparticle size. Smaller sized Ag-Ni nanoparticles prefer a single phase solid solution microstructure. Due to an increase in particle size during the synthesis process the initial solid solution decomposes into an ultrafine scale phase separated microstructure. We have shown that it is necessary to invoke critical point phenomenon and wetting transition in systems showing a critical point that leads to phase separated Ag-Ni nanoparticles providing a catalytic substrate for the nucleation of equilibrium Ag over it. In the case of the Ag-Cu system, we report the experimental observation of a core shell structure at small sizes. This can be rationalized in terms of a metastable solid solution. It is argued that the nucleation barrier can prevent the formation of biphasic morphology with an internal interface. In such a situation, demixing of the solid solution can bring the system to a lower energy configuration. This has lead to the observed core-shell morphology in the Ag-Cu system during room temperature synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beneficial effects of carbon grafting into the iron active material for rechargeable alkaline-iron-electrodes with and without Bi2S3 additive is probed by in situ X-ray diffraction in conjunction with Extended X-ray Absorption Fine Structure (EXAFS) and electrochemistry. EXAFS data unravel that the composition of pristine active material (PAM) for iron electrodes comprises 87% of magnetite and 13% of alpha-iron while carbon-grafted active material comprises 60% of magnetite and 40% of alpha-iron. In situ XRD patterns are recorded using a specially designed electrochemical cell. XRD data reflect that magnetite present in PAM iron electrode, without bismuth sulfide additive, is not reduced during charging while PAM iron electrode with bismuth sulfide additive is partially reduced to alpha-Fe/Fe(OH)(2). Interestingly, carbon-grafted-iron electrodes with bismuth sulfide exhibit complete conversion of active material to alpha-Fe/Fe(OH)2. The ameliorating effect of carbon grafting is substantiated by kinetic parameters obtained from steady-state potentiostatic polarization and Tafel plots. The mechanism for iron-electrode charge - discharge reactions are discussed in the light of the potential - pH diagrams for Fe - H2O, S - H2O and FeSads - H2O systems and it is surmised that carbon grafting into iron active material promotes its electrochemical utilization. (C) The Author(s) 2015. Published by ECS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Jansen mechanism is a one degree-of-freedom, planar, 12-link, leg mechanism that can be used in mobile robotic applications and in gait analysis. This paper presents the kinematics and dynamics of the Jansen leg mechanism. The forward kinematics, accomplished using circle intersection method, determines the trajectories of various points on the mechanism in the chassis (stationary link) reference frame. From the foot point trajectory, the step length is shown to vary linearly while step height varies non-linearly with change in crank radius. A dynamic model for the Jansen leg mechanism is proposed using bond graph approach with modulated multiport transformers. For given ground reaction force pattern and crank angular speed, this model helps determine the motor torque profile as well as the link and joint stresses. The model can therefore be used to rate the actuator torque and in design of the hardware and controller for such a system. The kinematics of the mechanism can also be obtained from this dynamic model. The proposed model is thus a useful tool for analysis and design of systems based on the Jansen leg mechanism. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing and fabricating hybrid systems with a visible light active semiconductor as one of its components is an important research area for the development of highly efficient photocatalysts. Herein, we report visible-light driven photocatalytic activity of graphene oxide (GO) and controllably reduced GO (rGO) modified Ag3PO4 composites fabricated by an in situ method. Concentration of graphene derivatives in GO/rGO-Ag3PO4 composites was in the range of 0.13-0.52 wt% which is very minute compared to those reported previously. The optimal concentration of GO in Ag3PO4 with a kinetics (k = 1.23 +/- 0.04 min(-1)) for the degradation of rhodamine B is 0.26 wt%. GO-Ag3PO4 photocatalysts display an improved catalytic activity compared with pristine and rGOs modified Ag3PO4. In line with this, GO/rGO-Ag3PO4 composites show improved photocatalytic activity for the degradation of 2-chlorophenol compared with Degussa P-25. Our experiments with GO reduced to different extents show that, rGO with more polar functional groups exhibits a higher photocatalytic efficiency. The photocatalytic activity in the presence of different scavengers reveals that holes and O-2(-center dot) reactive species play major roles in the degradation phenomenon. In view of our experimental results and reported theoretical studies, a change in conduction band energy level and variation in the contribution of different charge orbitals (C 2p and O 2p) to the conduction band in the composite favours electron flow from graphene derivatives to the semiconductor, enhancing its photocatalytic response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic buckling of viscoelastic plates with large deflection is investigated in this paper by using chaotic and fractal theory. The material behavior is given in terms of the Boltzmann superposition principle. in order to obtain accurate computation results, the nonlinear integro-differential dynamic equation is changed into an autonomic four-dimensional dynamical system. The numerical time integrations of equations are performed by using the fourth-order Runge-Kutta method. And the Lyapunov exponent spectrum, the fractal dimension of strange attractors and the time evolution of deflection are obtained. The influence of geometry nonlinearity and viscoelastic parameter on the dynamic buckling of viscoelastic plates is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Household-level water treatment and safe storage systems (HWTS) are simple, local, user-friendly, and low cost options to improve drinking water quality at the point of use. However, despite conclusive evidence of the health and economic benefits of HWTS, and promotion efforts in over 50 countries in the past 20 years, implementation outcomes have been slow, reaching only 5-10 million regular users. This study attempts to understand the barriers and drivers affecting HWTS implementation. Using a case study example of a biosand filter program in southern India, system dynamics modelling is shown to be a useful tool to map the inter-relationships of different critical factors and to understand the dissemination dynamics. It is found that the co-existence of expanding quickly and achieving financial sustainability appears to be difficult to achieve under the current program structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Starting in the 1980s, household-level water treatment and safe storage systems (HWTS) have been developed as simple, local, user-friendly, and low cost options to improve drinking water quality at the point of use. However, despite conclusive evidence of the health and economic benefits of HWTS, and promotion efforts in over 50 countries in the past 20 years, implementation outcomes have been slow, reaching only 5-10 million regular users. This study attempts to understand the barriers and drivers affecting HWTS implementation. Although existing literature related to HWTS and innovation diffusion theories proposed ample critical factors and recommendations, there is a lack of holistic and systemic approach to integrate these findings. It is proposed that system dynamics modelling can be a promising tool to map the inter-relationships of different critical factors and to understand the structure of HWTS dissemination process, which may lead to identifying high impact, leveraged mitigation strategies to scale-up HWTS adoption and sustained use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data have been collected on fisheries catch and effort trends since the latter half of the 1800s. With current trends in declining stocks and stricter management regimes, data need to be collected and analyzed over shorter periods and at finer spatial resolution than in the past. New methods of electronic reporting may reduce the lag time in data collection and provide more accurate spatial resolution. In this study I evaluated the differences between fish dealer and vessel reporting systems for federal fisheries in the US New England and Mid-Atlantic areas. Using data on landing date, report date, gear used, port landed, number of hauls, number of fish sampled and species quotas from available catch and effort records I compared dealer and vessel electronically collected data against paper collected dealer and vessel data to determine if electronically collected data are timelier and more accurate. To determine if vessel or dealer electronic reporting is more useful for management, I determined differences in timeliness and accuracy between vessel and dealer electronic reports. I also compared the cost and efficiency of these new methods with less technology intensive reporting methods using available cost data and surveys of seafood dealers for cost information. Using this information I identified potentially unnecessary duplication of effort and identified applications in ecosystem-based fisheries management. This information can be used to guide the decisions of fisheries managers in the United States and other countries that are attempting to identify appropriate fisheries reporting methods for the management regimes under consideration. (PDF contains 370 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several long-term monitoring studies describing the water quality and biological condition of Southeastern estuaries (National Estuarine Eutrophication Assessment Project, South Carolina Estuarine and Coastal Assessment Program (SCECAP), Environmental Monitoring and Assessment Program (EMAP), South Carolina Harmful Algal Bloom Program (SCHAB), South Carolina Tidal Creek Project, and others) have been developed. Many of the same water quality issues determined for open estuaries are also found in coastal stormwater ponds, and there are important interactions between the man-made ponds and the natural systems. Researchers have highlighted problems such as nutrient eutrophication, bacterial and chemical contamination, hypoxia, and harmful algal blooms (HABs). This technical memorandum summarizes the state-of-the-knowledge of water quality indicators (dissolved oxygen, nutrients, and chlorophyll a), and harmful algae in Southeastern coastal stormwater ponds. (PDF contains 31 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reefs exist in warm, clear, and relatively shallow marine waters worldwide. These complex assemblages of marine organisms are unique, in that they support highly diverse, luxuriant, and essentially self-sustaining ecosystems in otherwise nutrient-poor and unproductive waters. Coral reefs are highly valued for their great beauty and for their contribution to marine productivity. Coral reefs are favorite destinations for recreational diving and snorkeling, as well as commercial and recreational fishing activities. The Florida Keys reef tract draws an estimated 2 million tourists each year, contributing nearly $800 million to the economy. However, these reef systems represent a very delicate ecological balance, and can be easily damaged and degraded by direct or indirect human contact. Indirect impacts from human activity occurs in a number of different forms, including runoff of sediments, nutrients, and other pollutants associated with forest harvesting, agricultural practices, urbanization, coastal construction, and industrial activities. Direct impacts occur through overfishing and other destructive fishing practices, mining of corals, and overuse of many reef areas, including damage from souvenir collection, boat anchoring, and diver contact. In order to protect and manage coral reefs within U.S. territorial waters, the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Department of Commerce has been directed to establish and maintain a system of national marine sanctuaries and reserves, and to monitor the condition of corals and other marine organisms within these areas. To help carry out this mandate the NOAA Coastal Services Center convened a workshop in September, 1996, to identify current and emerging sensor technologies, including satellite, airborne, and underwater systems with potential application for detecting and monitoring corals. For reef systems occurring within depths of 10 meters or less (Figure 1), mapping location and monitoring the condition of corals can be accomplished through use of aerial photography combined with diver surveys. However, corals can exist in depths greater than 90 meters (Figure 2), well below the limits of traditional optical imaging systems such as aerial or surface photography or videography. Although specialized scuba systems can allow diving to these depths, the thousands of square kilometers included within these management areas make diver surveys for deeper coral monitoring impractical. For these reasons, NOAA is investigating satellite and airborne sensor systems, as well as technologies which can facilitate the location, mapping, and monitoring of corals in deeper waters. The following systems were discussed as having potential application for detecting, mapping, and assessing the condition of corals. However, no single system is capable of accomplishing all three of these objectives under all depths and conditions within which corals exist. Systems were evaluated for their capabilities, including advantages and disadvantages, relative to their ability to detect and discriminate corals under a variety of conditions. (PDF contains 55 pages)