928 resultados para cationic amphiphilic polymers
Resumo:
The vesicle-micelle transition in aqueous mixtures of dioctadecyidimethylammonium and octadecyltrimethylammonium bromide (DODAB and C(18)TAB) cationic surfactants, having respectively double and single chain, was investigated by differential scanning calorimetry (DSQ, steady-state fluorescence, dynamic light scattering (DLS) and surface tension. The experiments performed at constant total surfactant concentration, up to 1.0 mM, reveal that these homologous surfactants mix together to form mixed vesicles and/or micelles, depending on the relative amount of the surfactants. The melting temperature T-m of the mixed DODAB-C(18)TAB vesicles is larger than that for the neat DODAB in water owing to the incorporation of C(18)TAB in the vesicle bilayer. The surface tension decreases sigmoidally with C(18)TAB concentration and the inflection point lies around (XDODAB) approximate to 0.4, indicating the onset of micelle formation owing to saturation of DODAB vesicles by C(18)TAB molecules. When XDODAB > 0.5 C(18)TAB molecules are mainly solubilised by the vesicles, but when XDODAB < 0.25 micelles are dominant. Fluorescence data of the Nile Red probe incorporated in the system at different surfactant molar fractions indicate the formation of micelle and vesicle structures. These structures have apparent hydrodynamic radius RH of about 180 and 500-800 nm, respectively, as obtained by DLS measurements. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Association of class-II phospholipase A(2) (PLA(2)) with aggregated phospholipid substrate results in elevated levels of the Ca2+-dependent hydrolytic activity. The Asp49 residue participates in coordination of the Ca2+ ion cofactor, however, in Lys49-PLA(2) homologues (Lys49-PLA(2)S), substitution of the Asp49 by Lys results in loss of Ca2+ binding and lack of detectable phospholipid hydrolysis. Nevertheless, Lys49-PLA2S cause Ca2+-independent damage of liposome membranes. Bothropstoxin-I is a homodimeric Lys49-PLA(2) from the venom of Bothrops jararacussu, and in fluorescent marker release and dynamic light scattering experiments with DPPC liposomes we demonstrate activation of the Ca2+-independent membrane damaging activity by similar to4 molecules of sodium dodecyl sulphate (SDS) per protein monomer. Activation is accomparlied by significant changes in the intrinsic tryptophan fluorescence emission (ITFE) and near UV circular dichroism (UVCD) spectra of the protein. Subsequent binding of 7-10 SDS molecules results in further alterations in the ITFE and far UVCD spectra. Reduction in the rate of N-bromosuccinimide modification of Trp77 at the dimer interface suggests that initial binding of SDS to this region accompanies the activation of the membrane damaging activity. 1-anilinonaphthalene-8-sulphonic acid binding studies indicate that subsequent SDS binding to the active site is concomitant with the second structural transition. These results provide insights in the structural basis of amphiphile/protein coupling in class-II PLA(2)s. (C) 2004 Published by Elsevier B.V.
Resumo:
We have used near ultraviolet photoacoustic spectroscopy (PAS) over the wavelength range 240-320 nm to investigate the complex formed between the homodimeric bothropstoxin-I, a lysine-49-phospholipase A(2) from the venom of Bothrops jararacussu (BthTx-I), with the anionic amphiphile sodium dodecyl sulfate (SDS). At molar ratios > 10, the complex developed a significant light scatter, accompanied by a decrease in the intrinsic tryptophan fluorescence intensity emission (ITFE) of the protein, and an increase in the near UV-PAS signal. Difference PAS spectroscopy at SDS/BthTx-I ratios < 8 were limited to the region 280-290 nm, suggesting initial SDS binding to the tryptophan 77 located at the dimer interface. At SDS/BthTx-I ratios > 10, the intensity between 260 and 320 nm increases demonstrating that the more widespread tyrosine and phenylalanine residues contribute to the SDS/BthTx-I interaction. PAS signal phase changes at wavelengths specific for each aromatic residue suggest that the Trp77 becomes more buried on SDS binding, and that protein structural changes and dehydration may alter the microenvironments of Tyr and Phe residues. These results demonstrate the potential of near UV-PAS for the investigation of membrane proteins/detergent complexes in which light scatter is significant. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
At present, gene transfection insufficient efficiency is a major drawback of non-viral gene therapy. The 2 main types of delivery systems deployed in gene therapy are based on viral or non-viral gene carriers. Several non-viral modalities can transfer foreign genetic material into the human body. To do so, polycation-based gene delivery methods must achieve sufficient efficiency in the transportation of therapeutic genes across various extracellular and intracellular barriers. These barriers include interactions with blood components, vascular endothelial cells and uptake by the reticuloendothelial system. Furthermore, the degradation of therapeutic DNA by serum nucleases is a potential obstacle for functional delivery to target cells. Cationic polymers constitute one of the most promising approaches to the use of viral vectors for gene therapy. A better understanding of the mechanisms by which DNA can escape from endosomes and traffic to enter the nucleus has triggered new strategies of synthesis and has revitalized research into new polycation-based systems. The objective of this review is to address the state of the art in gene therapy with synthetic and natural polycations and the latest advances to improve gene transfer efficiency in cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Meglumine, (2R,3R,4R,5S)-6-methylaminohexane-1,2,3,4,5-pentol, is a carbohydrate derived from sorbitol in which the hydroxyl group in position one is replaced by a methylamine group. It forms binary adducts with substances having carboxyl groups, which have in common the presence of hydrogen bonding as the main force in the stabilization of these species. During melting, adducts of meglumine with flunixin (2-[[2-methyl-3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid) polymerize or self-assemble in amorphous supramolecular structures with molecular weights around 2.0 x 10(5) kDa. DSC curves, in a first heating, show isomorphic transitions where the last one at 137 A degrees C for the flunixin-meglumine adduct originated the supramolecular amorphous polymers with glass transition around 49.5 A degrees C. The kinetic parameters for the thermal decomposition step of the polymers were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and heating rates of 5, 10, 15, and 20 A degrees C min(-1), the E (alpha) and B (alpha) terms could be determined and, consequently, the pre-exponential factor, A(alpha), as well as the kinetic model, g(alpha).
Resumo:
This work describes the synthesis, IR and (13)C CPMAS NMR spectroscopic as well the thermal characterization of the new dicarboxylate complexes [Pd(2)(ox)(2)(4,4'-bipy)]n (1), [Pd(2)(ox)(2)(bpe)](n) (2) and [Pd(2)(ox)(2)(pz)](n) (3) {ox = oxalate, bipy = 4,4'-bipyridine, bpe = 1,2-bis(4-pyridyl)ethane, pz = pyrazine}. TG experiments reveal that compounds 1-3 undergo thermal decomposition in three steps. Metal palladium was the final product of the thermal decompositions, which was identified by X-ray powder diffraction.
Resumo:
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] (n) center dot 2nH(2)O (1), [Pd(fum)(bpe)] (n) center dot nH(2)O (2) and [Pd(fum)(pz)] (n) center dot 3nH(2)O (3) {bipy = 4,4'-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and (13)C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46-491 A degrees C. In all the cases, metallic palladium was identified as the final residue.
Resumo:
Synthesis, spectroscopic characterization and thermal behavior of pyrazolate-bridged palladium complexes [Pd(mu-Pz)(2)](n) (1), [Pd(mu-mPz)(2)](n) (2), [Pd(mu-dmPz)(2)](n) (3), [Pd(mu-IPz)(2)](n) (4) {pyrazolate (Pz(-)), 4-methylpyrazolate (mPz(-)), 3,5-dimethylpyrazolate (dmPz(-)), 4-iodopyrazolate (IPz(-))} have been described in this work. The exobidentate coordination mode of pyrazolato ligands in 1-4 was inferred on basis of IR spectroscopic evidences. TG investigations indicated that the introduction of substituents at the 4 position in the pyrazolyl moiety into coordination polymers do not affect significantly their thermal stability, whereas at the 3 and 5 position reduced the stability of the main chain. Metal palladium was the final product of the thermal decompositions, which was identified by X-ray powder diffraction.
Resumo:
The temperature dependence of photoinduced birefringence was investigated for mixed Langmuir-Blodgett (LB) films from the homopolymer poly[4'-[[2-(methacryloyloxy)ethyl]ethyl-amino]-2-chloro-4-nitroazobenzene] (HPDR13) and cadmium stearate (Cdst) and from the copolymer 4-[N-ethyl-N-(2-hydroxyethyl)]amino-2'-chloro-4'-nitroazobenzene (MMA-DR13) and CdSt. Birefringence was achieved by impinging a linearly polarized light on the LB films. The maximum birefringence achieved decreased with temperature as thermal relaxation of the chromophores was facilitated. The buildup curves for birefringence were fitted with biexponential functions representing distinctly different mechanisms with time constants. The first, fast process is thermally activated and may be represented by an Arrhenius process. The decay of birefringence after switching off the laser source was described by a Kohlraush-Williams-Watts (KWW) function, consistent with a distribution of relaxation times for the polymer system. Activation energies were obtained from Arrhenius plots of the rate constant of the exponential functions and KWW function, which showed that the buildup of birefringence was very similar for the two polymer systems. The decay, however, was slower for the LB film from MMA-DR13/CdSt. (C) 2002 Published by Elsevier B.V. Ltd.
Resumo:
The photoinduced birefringence is analyzed in a guest-host azobenzene-containing polymer in the temperature range from 20 to 330 K. An anomalous behavior arises in the low-temperature range, suggesting strong influence from the free volume for the chromophores in the polymer. This influence is so strong that quenched samples have a photoinduced signal ca. 5 times greater than the annealed ones at room temperature. An extended free volume model is presented based on two assumptions about thermal fluctuations in the cavities and their size distribution. This model, which is an extension of the model by Mita et al., can explain the main features of the photoinduced birefringence as a function of time, temperature, and initial free volume state. To account for the influence of free volume on the photoorientation, the detailed reorientation model by Sekkat's was used. We show that Sekkat's model leads to an exponential behavior at small orientation regimes, which simplifies the mathematical treatment and allows the mean free volume to be obtained from the data fitting.