988 resultados para catalytic oxidative cracking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam reforming of ethanol over CuO/CeO2 was studied. Acetaldehyde and hydrogen were mainly produced at 260degreesC. At 380degreesC, acetone was the main product, and 2 mol of hydrogen was produced from 1 mol of ethanol. The formation of hydrogen accompanied by the production of acetone was considered to proceed through the following, consecutive reactions: dehydrogenation of ethanol to acetaldehyde. aldol condensation of the acetaldehyde, and the reaction of the aldol with the lattice oxygen [O(s)] on the catalyst to form a surface intermediate, followed by its dehydrogenation and decarboxylation. The overall reaction was expressed by2C(2)H(5)OH + H2O --> CH3COCH3 + CO2 + 4H(2). Ceria played an important role as an oxygen supplier. The addition of MgO to CuO/CeO2 resulted in the production of hydrogen at lower temperatures by accelerating aldol condensation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co3O4 nanocrystals with average particle sizes of 30 and 50 run were synthesized using cobalt nitrate as precursor, and were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. Catalytic oxidation of cyclohexane with molecular oxygen was studied over Co3O4 nanocrystals. These catalysts showed obviously higher activities as compared to Co3O4 prepared by the conventional methods, Co3O4/Al2O3, or homogeneous cobalt catalyst under comparable reaction conditions. The 89.1% selectivity to cyclohexanol and cyclohexanone at 7.6% conversion of cyclohexane was realized over 50 nm sized Co3O4 nanocrystals at 393 K for 6 h. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new FeCoMnAPO-5 with AFI structure was synthesized under hydrothermal conditions and characterized by XRD, FT-IR, X-ray fluorescence, nitrogen adsorption and SEM. The oxidation of cyclohexane with molecular oxygen was studied over the catalyst at 403 K. It show d higher activity compared to FeAPO-5, CoAPO-5 and MnAPO-5. The FeCoMnAPO-5 catalyst was recycled twice without loss of activity or selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas phase partial oxidation of toluene over V/Ti oxide catalysts has been successfully performed in a microchannel reactor, which provides very good mass and heat transfer conditions. With the elimination of hot spots, which are known as the most negative factors for partial oxidation of hydrocarbons, steady and uniform reaction conditions can be achieved in the catalyst bed by using, the microreactor. Since the best performance of the catalysts might be exploited, the selectivity of partial oxidation products of toluene has remarkably increased compared to the traditional packed fixed-bed reactor, even without the bother of modifying the catalysts, diluting the reactants or catalysts with inert contents to avoid hot spots or improve the diffusion and mixing. Furthermore, in virtue of its inherent safety features, when using pure oxygen as oxidant, the reactions were handled safety within the explosion limits in the microreactor. With TiO2 carried V2O5 as catalysts, the total selectivity of benzaldehyde and benzoic acid reaches around 60%, and the toluene conversion is about 10%. The conversion can go up without violent decline of selectivity, unlike most fixed bed reactors. Space time yield of 3.12 kg h(-1) L-1 calculated on the basis of the channel volume has been achieved. The influence of operating conditions has been investigated in detail in the microreactor. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single-pass process with the combination of oxidative coupling (OCM) and dehydro-aromatization (MDA) for the direct conversion of methane is carried out. With the assistance of the OCM reaction over the SrO-La2O3/CaO catalyst loaded on top of the catalyst bed, the duration of the dehydro-aromatization reaction catalyzed by a 6Mo/HMCM-49 catalyst shows a significant improvement, and. the initial deactivation rate constant of the overall process revealed about 1.5 x 10(-6) s(-1). Up to 72 h on stream, the yield of aromatics was still maintained at 5.0% with a methane conversion of 9.6%, which is obviously higher than that reported for the conventional MDA process with single catalyst. Upon the TPR results, this wonderful enhancement would be attributed to an in-situ formation of CO2 and H2O through the OCM reaction, which serves as a scavenger for actively removing the coke formed during the MDA reaction via a reverse Boudouard reaction and the water gas reaction as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an interesting finding that the catalytic performance of supported Ag/SiO2 catalysts toward selective catalytic oxidation of CO in hydrogen at low temperatures can be greatly enhanced by pretreatment of the SiO2 support before catalyst preparation. Calcination of SiO2 at appropriate temperatures preferentially removes the H-bonded SiOH, which results in the highly dispersive Ag/SiO2 catalyst and thus improves the catalytic performance. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic performances of methane dehydroaromatization (MDA) under non-oxidative conditions over 6 wt.% Mo/HZSM-5 catalysts calcined for different durations of time at 773 K have been investigated in combination with ex situ H-1 MAS NMR characterization. Prolongation of the calcination time at 773 K is in favor of the diffusion of the Mo species on the external surface and the migration of Mo species into the channels, resulting in a further decrease in the number of Bronsted acid sites, while causing only a slight change in the Mo contents of the bulk and in the framework structure of the HZSM-5 zeolite. The MoQ(x) species associated and non-associated with the Bronsted acid sites can be estimated quantitatively based on the 1H MAS NMR measurements as well as on the assumption of a stoichiometry ratio of 1: 1 between the Mo species and the Bronsted acid sites. Calcining the 6 wt.% Mo/HZSM-5 catalyst at 773 K for 18 h can cause the MoOx species to associate with the Bronsted acid sites, while a 6 Wt-% MO/SiO2 sample can be taken as a catalyst in which all MoOx species are non-associated with the Bronsted acid sites. The TOF data at different times on stream on the 6 wt.% Mo/HZSM-5 catalyst calcined at 773 K for 18 h and on the 6 Wt-% MO/SiO2 catalyst reveal that the MoCx species formed from MoOx associated with the Bronsted acid sites are more active and stable than those formed from MoOx non-associated with the Bronsted acid sites. An analysis of the TPO profiles recorded on the used 6 wt.% Mo/HZSM-5 catalysts calcined for different durations of time combined with the TGA measurements also reveals that the more of the MoCx species formed from MoOx species associated with the Br6nsted acid sites, the lower the amount of coke that will be deposited on it. The decrease of the coke amount is mainly due to a decrease in the coke burnt-off at high temperature. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica-supported Rh catalysts with different Rh particle dimensions were investigated for CO hydrogenation. The catalysts were characterized by various techniques such as TEM, H-2-TPR and N-2 adsorption to study the catalyst morphology, the size distributions of Rh particles and the silica pores. It was found that the distribution and the size of Rh particles were affected by the silica pores, and the metal grains were enclosed in the pores of the support, and thereby their growth was limited. The catalytic activity and selectivity to C-2-oxygenates for CO hydrogenation were found to be significantly controlled by the Rh particle sizes, and the higher activity and selectivity to C2-oxygenates were obtained over bigger Rh particles, within the range of the reported particle sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silver catalyzed, selective catalytic reduction (SCR) of nitrogen oxides (NOx) by CH4, is shown to be a structure-sensitive reaction. Pretreatment has a great affect on the catalytic performances. Upon thermal treatment in inert gas stream, thermal induced changes in silver morphology lead to the formation of reduced silver species of clusters and particles. Catalysis over this catalyst indicates an initially higher activity but lower selectivity for the CH4-SCR of NOx Reaction induced restructuring of silver results in the formation of ill-defined silver oxides. This, in turn, impacts the adsorption properties and diffusivity of oxygen over silver catalyst, results in the decrease in activity but increase in selectivity of Ag-H-ZSM-5 catalyst for the CH4-SCR of NO.. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of MCM-22/ZSM-35 composites has been hydrothermally synthesized and characterized by XRD, SEM, particle size distribution analysis, N-2 adsorption and NH3-TPD techniques. Pulse and continuous flow reactions were carried out to evaluate the catalytic performances of these composites in aromatization of olefins, respectively. It was found that MCM-22/ZSM-35 composites could be rapidly crystallized at 174 degrees C with an optimal gel composition of SiO2/Al2O3=25, Na2O/SiO2=0.11, HMI/SiO2=0.35, and H2O/SiO2=45 (molar ratio), of which the weight ratio of ZSM-35 zeolite in the composite relied on the crystallization time. The coexistence of MCM-22 and ZSM-35 in the composite (MCM-22/ZSM-35=45/55 wt/wt) was observed to exert a notable synergistic effect on the aromatization ability for butene conversion and FCC gasoline updating, possibly due to the intergrowth of some MCM-22 and ZSM-35 layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper nanoparticles were deposited onto mesoporous SBA-15 support via two different routes: post-grafting method and incipient wet impregnation method. Both XRD and TEM reveal that the post-grafting can make Cu particles very small in size and highly dispersed into channels of SBA-15, while the impregnation method mainly forms large Cu particles on the external surface of SBA-15. TPR experiments show that CuO species formed by the post-grafting method is more reducible than that prepared by the impregnation method. The catalytic activity tests for CO oxidation manifests that the sample prepared by the post-grafting method has a much higher activity than that prepared by the impregnation method, with a lowering of 50 degrees C for T-50, showing a strong dependence of catalytic activity on the size and dispersion of Cu particles. Besides the preparation procedure, other factors including calcination temperature, reduction treatment, copper loading as well as the feed composition, have an important effect on the catalytic activity. The best performance was obtained when the catalyst was calcined at 500 degrees C and reduced at 550 degrees C. The calcination and reduction treatment at high temperature have been found to be necessary to completely remove the organic residue and to generate active metallic copper particles. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise improves functional capacity in spinal cord injury (SCI). However, exhaustive exercise, especially when sporadic, is linked to the production of reactive oxygen species that may have a detrimental effect on SCI. We aimed to study the effect of a single bout of exhaustive exercise on systemic oxidative stress parameters and on the expression of antioxidant enzymes in individuals with paraplegia. The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. Sixteen paraplegic subjects were submitted to a graded exercise test (GET) until volitional exhaustion. They were divided into active or non-active groups. Blood samples were drawn immediately, 1 and 2 h after the GET. We determined plasma malondialdehyde (MDA) and protein carbonylation as markers of oxidative damage. Antioxidant gene expression (catalase and glutathione peroxidase-GPx) was determined in peripheral blood mononuclear cells. We found a significant increase in plasma MDA and protein carbonyls immediately after the GET (P<0.05). This increment correlated significantly with the lactate levels. Active paraplegics showed lower levels of exercise-induced oxidative damage (P<0.05) and higher exercise-induced catalase (P<0.01) and GPx (P<0.05) gene expression after the GET. These results suggest that exercise training may be useful in SCI patients to develop systemic antioxidant defenses that may protect them against exercise-induced oxidative damage.