998 resultados para cardiac abnormalities


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin II (Ang II)* is a multifunctional hormone that influences the function of cardiovascular cells through a complex series of intracellular signaling events initiated by the interaction of Ang II with AT1 and AT2 receptors. AT1 receptor activation leads to cell growth, vascular contraction, inflammatory responses and salt and water retention, whereas AT2 receptors induce apoptosis, vasodilation and natriuresis. These effects are mediated via complex, interacting signaling pathways involving stimulation of PLC and Ca2+ mobilization; activation of PLD, PLA2, PKC, MAP kinases and NAD(P)H oxidase, and stimulation of gene transcription. In addition, Ang II activates many intracellular tyrosine kinases that play a role in growth signaling and inflammation, such as Src, Pyk2, p130Cas, FAK and JAK/STAT. These events may be direct or indirect via transactivation of tyrosine kinase receptors, including PDGFR, EGFR and IGFR. Ang II induces a multitude of actions in various tissues, and the signaling events following occupancy and activation of Ang receptors are tightly controlled and extremely complex. Alterations of these highly regulated signaling pathways may be pivotal in structural and functional abnormalities that underlie pathological processes in cardiovascular diseases such as cardiac hypertrophy, hypertension and atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The medical records of ten pediatric patients with a clinical diagnosis of tetanus were reviewed retrospectively. The heart rate and blood pressure of all tetanus patients were measured noninvasively every hour during the first two weeks of hospitalization. Six of ten tetanus patients presented clinical evidence of sympathetic hyperactivity (group A) and were compared with a control group consisting of four children who required mechanical ventilation for diseases other than tetanus (group B). Heart rate and blood pressure simultaneously and progressively increased to a maximum by day 7. The increase over baseline was 43.70 ± 11.77 bpm (mean ± SD) for heart rate (P<0.01) and 38.60 ± 26.40 mmHg for blood pressure (P<0.01). These values were higher and significantly different from those of the control group (group B) at day 6, which had an average heart rate increase over baseline of 19.35 ± 12.26 bpm (P<0.05) and blood pressure of 10.24 ± 13.30 mmHg (P<0.05). By the end of the second week of hospitalization, in group A the increase of systolic blood pressure over baseline had diminished to 9.60 ± 15.37 mmHg (P<0.05), but the heart rate continued to be elevated (27.80 ± 33.92 bpm, P = NS), when compared to day 7 maximal values. The dissociation of these two cardiovascular variables at the end of the second week of hospitalization suggests the presence of asymmetric cardiac and vascular sympathetic control. One possible explanation for these observations is a selective and delayed action of tetanus toxin on the inhibitory neurons which control sympathetic outflow to the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several lines of evidence have shown that Trypanosoma cruzi interacts with host extracellular matrix (ECM) components producing breakdown products that play an important role in parasite mobilization and infectivity. Parasite-released antigens also modulate ECM expression that could participate in cell-cell and/or cell-parasite interactions. Increased expression of ECM components has been described in the cardiac tissue of chronic chagasic patients and diverse target tissues including heart, thymus, central nervous system and skeletal muscle of experimentally T. cruzi-infected mice. ECM components may adsorb parasite antigens and cytokines that could contribute to the establishment and perpetuation of inflammation. Furthermore, T. cruzi-infected mammalian cells produce cytokines and chemokines that not only participate in the control of parasitism but also contribute to the establishment of chronic inflammatory lesions in several target tissues and most frequently lead to severe myocarditis. T. cruzi-driven cytokines and chemokines may also modulate VCAM-1 and ICAM-1 adhesion molecules on endothelial cells of target tissues and play a key role in cell recruitment, especially of activated VLA-4+LFA-1+CD8+ T lymphocytes, resulting in a predominance of this cell population in the inflamed heart, central nervous system and skeletal muscle. The VLA-4+-invading cells are surrounded by a fine network of fibronectin that could contribute to cell anchorage, activation and effector functions. Since persistent "danger signals" triggered by the parasite and its antigens are required for the establishment of inflammation and ECM alterations, therapeutic interventions that control parasitism and selectively modulate cell migration improve ECM abnormalities, paving the way for the development of new therapeutic strategies improving the prognosis of T. cruzi-infected individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise training associated with robust conditioning can be useful for the study of molecular mechanisms underlying exercise-induced cardiac hypertrophy. A swimming apparatus is described to control training regimens in terms of duration, load, and frequency of exercise. Mice were submitted to 60- vs 90-min session/day, once vs twice a day, with 2 or 4% of the weight of the mouse or no workload attached to the tail, for 4 vs 6 weeks of exercise training. Blood pressure was unchanged in all groups while resting heart rate decreased in the trained groups (8-18%). Skeletal muscle citrate synthase activity, measured spectrophotometrically, increased (45-58%) only as a result of duration and frequency-controlled exercise training, indicating that endurance conditioning was obtained. In groups which received duration and endurance conditioning, cardiac weight (14-25%) and myocyte dimension (13-20%) increased. The best conditioning protocol to promote physiological hypertrophy, our primary goal in the present study, was 90 min, twice a day, 5 days a week for 4 weeks with no overload attached to the body. Thus, duration- and frequency-controlled exercise training in mice induces a significant conditioning response qualitatively similar to that observed in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We detected anti-human small nuclear ribonucleoprotein (snRNP) autoantibodies in chagasic patients by different immunological methods using HeLa snRNPs. ELISA with Trypanosoma cruzi total lysate antigen or HeLa human U small nuclear ribonucleoproteins (UsnRNPs) followed by incubation with sera from chronic chagasic and non-chagasic cardiac patients was used to screen and compare serum reactivity. Western blot analysis using a T. cruzi total cell extract was also performed in order to select some sera for Western blot and immunoprecipitation assays with HeLa nuclear extract. ELISA showed that 73 and 95% of chronic chagasic sera reacted with HeLa UsnRNPs and T. cruzi antigens, respectively. The Western blot assay demonstrated that non-chagasic cardiac sera reacted with high molecular weight proteins present in T. cruzi total extract, probably explaining the 31% reactivity found by ELISA. However, these sera reacted weakly with HeLa UsnRNPs, in contrast to the chagasic sera, which showed autoantibodies with human Sm (from Stefanie Smith, the first patient in whom this activity was identified) proteins (B/B', D1, D2, D3, E, F, and G UsnRNP). Immunoprecipitation reactions using HeLa nuclear extracts confirmed the reactivity of chagasic sera and human UsnRNA/RNPs, while the other sera reacted weakly only with U1snRNP. These findings agree with previously reported data, thus supporting the idea of the presence of autoimmune antibodies in chagasic patients. Interestingly, non-chagasic cardiac sera also showed reactivity with T. cruzi antigen and HeLa UsnRNPs, which suggests that individuals with heart disease of unknown etiology may develop autoimmune antibodies at any time. The detection of UsnRNP autoantibodies in chagasic patients might contribute to our understanding of how they develop upon initial T. cruzi infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac troponins (cTn) I and T are the current golden standard biochemical markers in the diagnosis and risk stratification of patients with suspected acute coronary syndrome. During the past few years, novel assays capable of detecting cTn‐concentrations in >50% of apparently healthy individuals have become readily available. With the emerging of these high sensitivity cTn assays, reductions in the assay specificity have caused elevations in the measured cTn levels that do not correlate with the clinical picture of the patient. The increased assay sensitivity may reveal that various analytical interference mechanisms exist. This doctoral thesis focused on developing nanoparticle‐assisted immunometric assays that could possibly be applied to an automated point‐of‐care system. The main objective was to develop minimally interference‐prone assays for cTnI by employing recombinant antibody fragments. Fast 5‐ and 15‐minute assays for cTnI and D‐dimer, a degradation product of fibrin, based on intrinsically fluorescent nanoparticles were introduced, thus highlighting the versatility of nanoparticles as universally applicable labels. The utilization of antibody fragments in different versions of the developed cTnI‐assay enabled decreases in the used antibody amounts without sacrificing assay sensitivity. In addition, the utilization of recombinant antibody fragments was shown to significantly decrease the measured cTnI concentrations in an apparently healthy population, as well as in samples containing known amounts of potentially interfering factors: triglycerides, bilirubin, rheumatoid factors, or human anti‐mouse antibodies. When determining the specificity of four commercially available antibodies for cTnI, two out of the four cross‐reacted with skeletal troponin I, but caused crossreactivity issues in patient samples only when paired together. In conclusion, the results of this thesis emphasize the importance of careful antibody selection when developing cTnI assays. The results with different recombinant antibody fragments suggest that the utilization of antibody fragments should strongly be encouraged in the immunoassay field, especially with analytes such as cTnI that require highly sensitive assay approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesial temporal lobe epilepsy (MTLE) is associated with hippocampal atrophy and hippocampal signal abnormalities. In our series of familial MTLE (FMTLE), we found a high proportion of hippocampal abnormalities. To quantify signal abnormalities in patients with FMTLE we studied 152 individuals (46 of them asymptomatic) with FMTLE. We used NIH-Image® for volumetry and signal quantification in coronal T1 inversion recovery and T2 for all cross-sections of the hippocampus. Values diverging by 2 or more SD from the control mean were considered abnormal. T2 hippocampal signal abnormalities were found in 52% of all individuals: 54% of affected subjects and 48% of asymptomatic subjects. T1 hippocampal signal changes were found in 34% of all individuals: 42.5% of affected subjects and 15% of asymptomatic subjects. Analysis of the hippocampal head (first three slices) revealed T2 abnormalities in 73% of all individuals (74% of affected subjects and 72% of asymptomatic subjects) and T1 abnormalities in 59% (67% of affected subjects and 41% of asymptomatic subjects). Affected individuals had smaller volumes than controls (P < 0.0001). There was no difference in hippocampal volumes between asymptomatic subjects and controls, although 39% of asymptomatic patients had hippocampal atrophy. Patients with an abnormal hippocampal signal (133 individuals) had smaller ipsilateral volume, but no linear correlation could be determined. Hippocampal signal abnormalities in FMTLE were more frequently found in the hippocampal head in both affected and asymptomatic family members, including those with normal volumes. These results indicate that subtle abnormalities leading to an abnormal hippocampal signal in FMTLE are not necessarily related to seizures and may be determined by genetic factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hemodynamic care during postoperative management of myocardial revascularization should include vasorelaxing drugs to insure adequate graft and coronary flow, and stimulation of stroke volume to maintain vascular perfusion pressure. We tested the cardiac (inotropic and lusitropic) and vascular (relaxant) effects of diltiazem (0.1 nM to 0.1 mM), dobutamine (10 µM to 10 mM) and amrinone (10 µM to 1 mM) on isolated rat atria and thoracic aorta, and also on isolated human saphenous vein (HSV) and human mammary artery (HMA). Dobutamine produced a maximal positive inotropic effect (+dF/dt max = 29 ± 7%) at its ED50 for aortic relaxation (88 ± 7 µM). Conversely, at their ED50 for aortic relaxation diltiazem depressed myocardial contractility and amrinone did not exhibit myocardial effects. In HSV and HMA contracted with 80 mM potassium, diltiazem and dobutamine (but not amrinone) had a vasorelaxant activity similar to that in rat aorta. Norepinephrine-contracted human vessels were significantly more sensitive than potassium-contracted vessels to the relaxant effect of amrinone (ED50 HMA = 15 ± 5 µM, ED50 HSV = 72 ± 31 µM, P < 0.05). We conclude that at concentrations still devoid of myocardial effects dobutamine and amrinone are effective dilators in graft segment vessels and rat aorta contracted by membrane depolarization. If the difference between aortic and myocardial tissue still holds in human tissues, at the appropriate concentrations these drugs should be expected to improve cardiac performance while still contributing to the maintenance of graft patency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of swimming training (ST) on vagal and sympathetic cardiac effects was investigated in sedentary (S, N = 12) and trained (T, N = 12) male Wistar rats (200-220 g). ST consisted of 60-min swimming sessions 5 days/week for 8 weeks, with a 5% body weight load attached to the tail. The effect of the autonomic nervous system in generating training-induced resting bradycardia (RB) was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. Cardiac hypertrophy was evaluated by cardiac weight and myocyte morphometry. Plasma catecholamine concentrations and citrate synthase activity in soleus muscle were also determined in both groups. Resting heart rate was significantly reduced in T rats (355 ± 16 vs 330 ± 20 bpm). RB was associated with a significantly increased cardiac vagal effect in T rats (103 ± 25 vs 158 ± 40 bpm), since the sympathetic cardiac effect and intrinsic heart rate were similar for the two groups. Likewise, no significant difference was observed for plasma catecholamine concentrations between S and T rats. In T rats, left ventricle weight (13%) and myocyte dimension (21%) were significantly increased, suggesting cardiac hypertrophy. Skeletal muscle citrate synthase activity was significantly increased by 52% in T rats, indicating endurance conditioning. These data suggest that RB induced by ST is mainly mediated parasympathetically and differs from other training modes, like running, that seems to mainly decrease intrinsic heart rate in rats. The increased cardiac vagal activity associated with ST is of clinical relevance, since both are related to increased life expectancy and prevention of cardiac events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial ion transport, oxidative phosphorylation, redox balance, and physical integrity are key factors in tissue survival following potentially damaging conditions such as ischemia/reperfusion. Recent research has demonstrated that pharmacologically activated inner mitochondrial membrane ATP-sensitive K+ channels (mitoK ATP) are strongly cardioprotective under these conditions. Furthermore, mitoK ATP are physiologically activated during ischemic preconditioning, a procedure which protects against ischemic damage. In this review, we discuss mechanisms by which mitoK ATP may be activated during preconditioning and the mitochondrial and cellular consequences of this activation, focusing on end-effects which may promote ischemic protection. These effects include decreased loss of tissue ATP through reverse activity of ATP synthase due to increased mitochondrial matrix volumes and lower transport of adenine nucleotides into the matrix. MitoK ATP also decreases the release of mitochondrial reactive oxygen species by promoting mild uncoupling in concert with K+/H+ exchange. Finally, mitoK ATP activity may inhibit mitochondrial Ca2+ uptake during ischemia, which, together with decreased reactive oxygen release, can prevent mitochondrial permeability transition, loss of organelle function, and loss of physical integrity. We discuss how mitochondrial redox status, K+ transport, Ca2+ transport, and permeability transitions are interrelated during ischemia/reperfusion and are determinant factors regarding the extent of tissue damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eucalyptol is an essential oil that relaxes bronchial and vascular smooth muscle although its direct actions on isolated myocardium have not been reported. We investigated a putative negative inotropic effect of the oil on left ventricular papillary muscles from male Wistar rats weighing 250 to 300 g, as well as its effects on isometric force, rate of force development, time parameters, post-rest potentiation, positive inotropic interventions produced by Ca2+ and isoproterenol, and on tetanic tension. The effects of 0.3 mM eucalyptol on myosin ATPase activity were also investigated. Eucalyptol (0.003 to 0.3 mM) reduced isometric tension, the rate of force development and time parameters. The oil reduced the force developed by steady-state contractions (50% at 0.3 mM) but did not alter sarcoplasmic reticulum function or post-rest contractions and produced a progressive increase in relative potentiation. Increased extracellular Ca2+ concentration (0.62 to 5 mM) and isoproterenol (20 nM) administration counteracted the negative inotropic effects of the oil. The activity of the contractile machinery evaluated by tetanic force development was reduced by 30 to 50% but myosin ATPase activity was not affected by eucalyptol (0.3 mM), supporting the idea of a reduction of sarcolemmal Ca2+ influx. The present results suggest that eucalyptol depresses force development, probably acting as a calcium channel blocker.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pharmacokinetics of propranolol may be altered by hypothermic cardiopulmonary bypass (CPB), resulting in unpredictable postoperative hemodynamic responses to usual doses. The objective of the present study was to investigate the pharmacokinetics of propranolol in patients undergoing coronary artery bypass grafting (CABG) by CPB under moderate hypothermia. We evaluated 11 patients, 4 women and 7 men (mean age 57 ± 8 years, mean weight 75.4 ± 11.9 kg and mean body surface area 1.83 ± 0.19 m²), receiving propranolol before surgery (80-240 mg a day) and postoperatively (10 mg a day). Plasma propranolol levels were measured before and after CPB by high-performance liquid chromatography. Pharmacokinetic Solutions 2.0 software was used to estimate the pharmacokinetic parameters after administration of the drug pre- and postoperatively. There was an increase of biological half-life from 4.5 (95% CI = 3.9-6.9) to 10.6 h (95% CI = 8.2-14.7; P < 0.01) and an increase in volume of distribution from 4.9 (95% CI = 3.2-14.3) to 8.3 l/kg (95% CI = 6.5-32.1; P < 0.05), while total clearance remained unchanged 9.2 (95% CI = 7.7-24.6) vs 10.7 ml min-1 kg-1 (95% CI = 7.7-26.6; NS) after surgery. In conclusion, increases in drug distribution could be explained in part by hemodilution during CPB. On the other hand, the increase of biological half-life can be attributed to changes in hepatic metabolism induced by CPB under moderate hypothermia. These alterations in the pharmacokinetics of propranolol after CABG with hypothermic CPB might induce a greater myocardial depression in response to propranolol than would be expected with an equivalent dose during the postoperative period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2) in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 ± 0.4 vs 8 ± 0.8 mmHg, P = 0.0001). Resting cardiac index (CI) tended to be lower in ischemic heart failure rats (P = 0.07). Resting heart rate (HR) and stroke volume index (SVI) did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 ± 7.37 vs 109.02 ± 27.87 mL min-1 kg-1, P = 0.005). The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent data from our laboratory have shown that patients with the indeterminate form of Chagas' disease can have impairment of left ventricular contractility, as evaluated by the slope of the left ventricle end-systolic pressure-dimension relationship. We also showed that Chagas' disease patients with minimal baseline wall motion abnormalities detected by two-dimensional echocardiography have more intense contractility impairment when compared to patients with the indeterminate form of the disease without this abnormality. The prognostic implications of these findings have not been established. We evaluated 59 patients (37-76 years, mean = 55 years) with different clinical forms of Chagas' disease, who had normal left ventricular global systolic function at baseline (57.6 ± 6.9%) and who had at least one additional echo during clinical follow-up (0.4-17.6; mean 4.6 years). Group 1 consisted of 14 patients with minor baseline left ventricle wall motion abnormalities and group 2 consisted of 45 patients without these abnormalities. During follow-up, global left ventricle systolic function deterioration was observed in 10 group 1 patients (71.4%) and in only 10 group 2 patients (22.2%; P < 0.005). Age and duration of follow-up were not independent determinants of left ventricular function deterioration in these patients. The present data indicate that mild segmental left ventricular wall motion abnormalities are associated with worsening of systolic function in Chagas' disease patients who have normal baseline global systolic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present investigation was to study the effect of acute swimming training with an anaerobic component on matrix metallopeptidase (MMP) activity and myosin heavy chain gene expression in the rat myocardium. Animals (male Wistar rats, weighing approximately 180 g) were trained for 6 h/day in 3 sessions of 2 h each for 1 to 5 consecutive days (N = 5 rats per group). Rats swam in basins 47 cm in diameter and 60 cm deep filled with water at 33 to 35ºC. After the training period a significant increase (P < 0.05) was observed in the heart weight normalized to body weight by about 22 and 35% in the groups that trained for 96 and 120 h, respectively. Blood lactate levels were significantly increased (P < 0.05) in all groups after all training sessions, confirming an anaerobic component. However, lactate levels decreased (P < 0.05) with days of training, suggesting that the animals became adapted to this protocol. Myosin heavy chain-ß gene expression, analyzed by real time PCR and normalized with GAPDH gene expression, showed a significant two-fold increase (P < 0.01) after 5 days of training. Zymography analysis of myocardium extracts indicated a single ~60-kDa activity band that was significantly increased (P < 0.05) after 72, 96, and 120 h, indicating an increased expression of MMP-2 and suggesting precocious remodeling. Furthermore, the presence of MMP-2 was confirmed by Western blot analysis, but not the presence of MMP-1 and MMP-3. Taken together, our results indicate that in these training conditions, the rat heart undergoes early biochemical and functional changes required for the adaptation to the new physiological condition by tissue remodeling.