930 resultados para camera trapping
Resumo:
Antechinus argentus sp. nov. is currently only known from the plateau at the eastern escarpment of Kroombit Tops National Park, about 400km NNW of Brisbane and 60km SSW of Gladstone, south-east Queensland, Australia. Antechinus flavipes (Waterhouse) is also known from Kroombit Tops NP, 4.5km W of the nearest known population of A. argentus; A. mysticus Baker, Mutton and Van Dyck has yet to be found within Kroombit Tops, but is known from museum specimens taken at Bulburin NP, just 40km ESE, as well as extant populations about 400km to both the south-east and north-west of Kroombit NP. A. argentus can be easily distinguished in the field, having an overall silvery/grey appearance with much paler silver feet and drabber deep greyish-olive rump than A. flavipes, which has distinctive yellow-orange toned feet, rump and tail-base; A. argentus fur is also less coarse than that of A. flavipes. A. argentus has a striking silver-grey head, neck and shoulders, with pale, slightly broken eye-rings, which distinguish it from A. mysticus which has a more subtle greyish-brown head, pale buff dabs of eyeliner and more colourful brownish-yellow rump. Features of the dentary can also be used for identification: A. argentus differs from A. flavipes in having smaller molar teeth, as well as a narrower and smaller skull and from A. mysticus in having on average a narrower snout, smaller skull and dentary lengths and smaller posterior palatal vacuities in the skull. A. argentus is strongly divergent genetically (at mtDNA) from both A. flavipes (9.0–11.2%) and A. mysticus (7.2–7.5%), and forms a very strongly supported clade to the exclusion of all other antechinus species, in both mtDNA and combined (mtDNA and nDNA) phylogenies inferred here. We are yet to make detailed surveys in search of A. argentus from forested areas to the immediate east and north of Kroombit Tops. However, A. mysticus has only been found at these sites in low densities in decades past and not at all in several recent trapping expeditions conducted by the authors. With similar habitat types in close geographic proximity, it is plausible that A. argentus may be found outside Kroombit. Nevertheless, it is striking that from a range of surveys conducted at Kroombit Tops in the last 15 years and intensive surveys by the authors in the last 3 years, totalling more than 5 080 trap nights, just 13 A. argentus have been captured from two sites less than 6 km apart. If this is even close to the true geographic extent of the species, it would possess one of the smallest distributions of an Australian mammal species. With several threats identified, we tentatively recommend that A. argentus be listed as Endangered, pending an exhaustive trapping survey of Kroombit and surrounds.
Resumo:
Disjoint top-view networked cameras are among the most commonly utilized networks in many applications. One of the open questions for these cameras' study is the computation of extrinsic parameters (positions and orientations), named extrinsic calibration or localization of cameras. Current approaches either rely on strict assumptions of the object motion for accurate results or fail to provide results of high accuracy without the requirement of the object motion. To address these shortcomings, we present a location-constrained maximum a posteriori (LMAP) approach by applying known locations in the surveillance area, some of which would be passed by the object opportunistically. The LMAP approach formulates the problem as a joint inference of the extrinsic parameters and object trajectory based on the cameras' observations and the known locations. In addition, a new task-oriented evaluation metric, named MABR (the Maximum value of All image points' Back-projected localization errors' L2 norms Relative to the area of field of view), is presented to assess the quality of the calibration results in an indoor object tracking context. Finally, results herein demonstrate the superior performance of the proposed method over the state-of-the-art algorithm based on the presented MABR and classical evaluation metric in simulations and real experiments.
Resumo:
This paper presents a method for the continuous segmentation of dynamic objects using only a vehicle mounted monocular camera without any prior knowledge of the object’s appearance. Prior work in online static/dynamic segmentation is extended to identify multiple instances of dynamic objects by introducing an unsupervised motion clustering step. These clusters are then used to update a multi-class classifier within a self-supervised framework. In contrast to many tracking-by-detection based methods, our system is able to detect dynamic objects without any prior knowledge of their visual appearance shape or location. Furthermore, the classifier is used to propagate labels of the same object in previous frames, which facilitates the continuous tracking of individual objects based on motion. The proposed system is evaluated using recall and false alarm metrics in addition to a new multi-instance labelled dataset to evaluate the performance of segmenting multiple instances of objects.
Resumo:
We describe a novel method of fabricating atom chips that are well suited to the production and manipulation of atomic Bose–Einstein condensates. Our chip was created using a silver foil and simple micro-cutting techniques without the need for photolithography. It can sustain larger currents than conventional chips, and is compatible with the patterning of complex trapping potentials. A near pure Bose–Einstein condensate of 4 × 104 87Rb atoms has been created in a magnetic microtrap formed by currents through wires on the chip. We have observed the fragmentation of atom clouds in close proximity to the silver conductors. The fragmentation has different characteristic features to those seen with copper conductors.
Resumo:
In many cities around the world, surveillance by a pervasive net of CCTV cameras is a common phenomenon in an attempt to uphold safety and security across the urban environment. Video footage is being recorded and stored, sometimes live feeds are being watched in control rooms hidden from public access and view. In this study, we were inspired by Steve Mann’s original work on sousveillance (surveillance from below) to examine how a network of camera equipped urban screens could allow the residents of Oulu in Finland to collaborate on the safekeeping of their city. An agile, rapid prototyping process led to the design, implementation and ‘in the wild’ deployment of the UbiOpticon screen application. Live video streams captured by web cams integrated at the top of 12 distributed urban screens were broadcast and displayed in a matrix arrangement on all screens. The matrix also included live video streams of two roaming mobile phone cameras. In our field study we explored the reactions of passers-by and users of this screen application that seeks to inverse Bentham’s original panopticon by allowing the watched to be watchers at the same time. In addition to the original goal of participatory sousveillance, the system’s live video feature sparked fun and novel user-led apprlopriations.
Resumo:
Detection and characterisation of structural modifications of a hindered amine light stabiliser (HALS) directly from a polyester-based coil coating have been achieved by desorption electrospray ionisation mass spectrometry (DESI-MS) for the first time. In situ detection is made possible by exposing the coating to an acetone vapour atmosphere prior to analysis. This is a gentle and non-destructive treatment that allows diffusion of analyte to the surface without promoting lateral migration. Using this approach a major structural modification of the HALS TINUVIN®123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) was discovered where one N-ether piperidine moiety (N-OC8H17) is converted to a secondary piperidine (N–H). With the use of 2-dimensional DESI-MS imaging the modification was observed to arise during high curing temperatures (ca. 260 °C) and under simulated physiological conditions (80 °C, full solar spectrum). It is proposed that the secondary piperidine derivative is a result of a highly reactive aminyl radical intermediate produced by N–O homolytic bond cleavage. The nature of the bond cleavage is also suggested by ESR spin-trapping experiments employing α-phenyl-N-tert-butyl nitrone (PBN) in toluene at 80 °C. The presence of a secondary piperidine derivative in situ and the implication of N–OR competing with NO–R bond cleavage suggest an alternative pathway for generation of the nitroxyl radical—an essential requirement in anti-oxidant activity that has not previously been described for the N-ether sub-class of HALS.
Resumo:
Aground-based tracking camera and coaligned slitless spectrograph were used to measure the spectral signature of visible radiation emitted from the Hayabusa capsule as it entered into the Earth’s atmosphere in June 2010. Good quality spectra were obtained, which showed the presence of radiation from the heat shield of the vehicle and the shock-heated air in front of the vehicle. An analysis of the blackbody nature of the radiation concluded that the peak average temperature of the surface was about (3100± 100)K. Line spectra from oxygen and nitrogen atoms were used to infer a peak average shock-heated gas temperature of around((7000±400))K.
Resumo:
Person re-identification is particularly challenging due to significant appearance changes across separate camera views. In order to re-identify people, a representative human signature should effectively handle differences in illumination, pose and camera parameters. While general appearance-based methods are modelled in Euclidean spaces, it has been argued that some applications in image and video analysis are better modelled via non-Euclidean manifold geometry. To this end, recent approaches represent images as covariance matrices, and interpret such matrices as points on Riemannian manifolds. As direct classification on such manifolds can be difficult, in this paper we propose to represent each manifold point as a vector of similarities to class representers, via a recently introduced form of Bregman matrix divergence known as the Stein divergence. This is followed by using a discriminative mapping of similarity vectors for final classification. The use of similarity vectors is in contrast to the traditional approach of embedding manifolds into tangent spaces, which can suffer from representing the manifold structure inaccurately. Comparative evaluations on benchmark ETHZ and iLIDS datasets for the person re-identification task show that the proposed approach obtains better performance than recent techniques such as Histogram Plus Epitome, Partial Least Squares, and Symmetry-Driven Accumulation of Local Features.
Resumo:
PURPOSE To investigate changes in the characteristics of the corneal optics, total optics, anterior biometrics and axial length of the eye during a near task, in downward gaze, over 10 min. METHODS Ten emmetropes (mean - 0.14 ± 0.24 DS) and 10 myopes (mean - 2.26 ± 1.42 DS) aged from 18 to 30 years were recruited. To measure ocular biometrics and corneal topography in downward gaze, an optical biometer (Lenstar LS900) and a rotating Scheimpflug camera (Pentacam HR) were inclined on a custom built, height and tilt adjustable table. The total optics of the eye were measured in downward gaze with binocular fixation using a modified Shack-Hartmann wavefront sensor. Initially, subjects performed a distance viewing task at primary gaze for 10 min to provide a "wash-out" period for prior visual tasks. A distance task (watching video at 6 m) in downward gaze (25°) and a near task (watching video on a portable LCD screen with 2.5 D accommodation demand) in primary gaze and 25°downward gaze were then carried out, each for 10 min in a randomized order. During measurements, in dichoptic view, a Maltese cross was fixated with the right (untested) eye and the instrument’s fixation target was fixated with the subject’s tested left eye. Immediately after (0 min), 5 and 10 min from the commencement of each trial, measurements of ocular parameters were acquired in downward gaze. RESULTS Axial length exhibited a significant increase with downward gaze and accommodation over time (p<0.05). The greatest axial elongation was observed in downward gaze with 2.5 D accommodation after 10 min (mean change from baseline 23±3 µm). Downward gaze also caused greater changes in anterior chamber depth (ACD) and lens thickness (LT) with accommodation (ACD mean change -163±12µm at 10 min; LT mean change 173±17 µm at 10 min) compared to primary gaze with accommodation (ACD mean change -138±12µm at 10 min; LT mean change 131±15 µm at 10 min). Both corneal power and total ocular power changed by a small but significant amount with downward gaze (p<0.05), resulting in a myopic shift (~0.10 D) in the spherical power of the eye compared with primary gaze. CONCLUSION The axial length, anterior biometrics and ocular refraction change significantly with accommodation in downward gaze as a function of time. These findings provide new insights into the optical and bio-mechanical changes of the eye during typical near tasks.
Resumo:
Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations: i) subtraction of the best linear fit from the data (detrending), and; ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s−2). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: −0.05 to 0.06 vs. 0.00 to 0.14 m.s−2), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: −0.16 to −0.02 vs. −0.07 to 0.07 m.s−2). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.
Resumo:
Various tools have been developed to assist designers in making interfaces easier to use although none yet offer a complete solution. Through previous work we have established that intuitive interaction is based on past experience. From this we have developed theory around intuitive interaction, a continuum and a conceptual tool for intuitive use. We then trialled our tool. Firstly, one designer used the tool to design a camera. Secondly, seven groups of postgraduate students re-designed various products using our tool. We then chose one of these - a microwave – and prototyped the new and original microwave interfaces on a touchscreen. We tested them on three different age groups. We found that the new design was more intuitive and rated by participants as more familiar. Therefore, design interventions based on our intuitive interaction theory can work. Work is ongoing to develop the tool further.
Resumo:
The location of previously unseen and unregistered individuals in complex camera networks from semantic descriptions is a time consuming and often inaccurate process carried out by human operators, or security staff on the ground. To promote the development and evaluation of automated semantic description based localisation systems, we present a new, publicly available, unconstrained 110 sequence database, collected from 6 stationary cameras. Each sequence contains detailed semantic information for a single search subject who appears in the clip (gender, age, height, build, hair and skin colour, clothing type, texture and colour), and between 21 and 290 frames for each clip are annotated with the target subject location (over 11,000 frames are annotated in total). A novel approach for localising a person given a semantic query is also proposed and demonstrated on this database. The proposed approach incorporates clothing colour and type (for clothing worn below the waist), as well as height and build to detect people. A method to assess the quality of candidate regions, as well as a symmetry driven approach to aid in modelling clothing on the lower half of the body, is proposed within this approach. An evaluation on the proposed dataset shows that a relative improvement in localisation accuracy of up to 21 is achieved over the baseline technique.
Resumo:
The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasmaelectrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.
Resumo:
Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.
Resumo:
We propose and evaluate a novel methodology to identify the rolling shutter parameters of a real camera. We also present a model for the geometric distortion introduced when a moving camera with a rolling shutter views a scene. Unlike previous work this model allows for arbitrary camera motion, including accelerations, is exact rather than a linearization and allows for arbitrary camera projection models, for example fisheye or panoramic. We show the significance of the errors introduced by a rolling shutter for typical robot vision problems such as structure from motion, visual odometry and pose estimation.