980 resultados para calculations
Resumo:
We study the interaction between polarized terahertz (THz) radiation and micro-structured large-area graphene in transmission geometry. In order to efficiently couple the radiation into the two-dimensional material, a lateral periodic patterning of a closed graphene sheet by intercalation doping into stripes is chosen. We observe unequal transmittance of the radiation polarized parallel and perpendicular to the stripes. The relative contrast, partly enhanced by Fabry-Perot oscillations reaches 20 %. The effect even increases up to 50 % when removing graphene stripes in analogy to a wire grid polarizer. The polarization dependence is analyzed in a large frequency range from < 80 GHz to 3 THz, including the plasmon-polariton resonance. The results are in excellent agreement with theoretical calculations based on the electronic energy spectrum of graphene and the electrodynamics of the patterned structure
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.
Resumo:
The production cross sections of top-quark pairs in association with massive vector bosons have been measured using data from pp collisions at s√=8 TeV. The dataset corresponds to an integrated luminosity of 20.3 fb−1 collected by the ATLAS detector in 2012 at the LHC. Final states with two, three or four leptons are considered. A fit to the data considering the tt¯W and tt¯Z processes simultaneously yields a significance of 5.0σ (4.2σ) over the background-only hypothesis for tt¯W (tt¯Z) production. The measured cross sections are σtt¯W=369+100−91 fb and σtt¯Z=176+58−52 fb. The background-only hypothesis with neither tt¯W nor tt¯Z production is excluded at 7.1σ. All measurements are consistent with next-to-leading-order calculations for the tt¯W and tt¯Z processes.
Resumo:
It was found that the non-perturbative corrections calculated using Pythia with the Perugia 2011 tune did not include the effect of the underlying event. The affected correction factors were recomputed using the Pythia 6.427 generator. These corrections are applied as baseline to the NLO pQCD calculations and thus the central values of the theoretical predictions have changed by a few percent with the new corrections. This has a minor impact on the agreement between the data and the theoretical predictions. Figures 2 and 6 to 13, and all the tables have been updated with the new values. A few sentences in the discussion in sections 5.2 and 9 were altered or removed.
Resumo:
High transverse momentum jets produced in pp collisions at a centre of mass energy of 7 TeV are used to measure the transverse energy--energy correlation function and its associated azimuthal asymmetry. The data were recorded with the ATLAS detector at the LHC in the year 2011 and correspond to an integrated luminosity of 158 pb−1. The selection criteria demand the average transverse momentum of the two leading jets in an event to be larger than 250 GeV. The data at detector level are well described by Monte Carlo event generators. They are unfolded to the particle level and compared with theoretical calculations at next-to-leading-order accuracy. The agreement between data and theory is good and provides a precision test of perturbative Quantum Chromodynamics at large momentum transfers. From this comparison, the strong coupling constant given at the Z boson mass is determined to be αs(mZ)=0.1173±0.0010 (exp.) +0.0065−0.0026 (theo.).
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado em Tecnologias de Manufatura
Resumo:
Tese de Doutoramento em Ciências - Especialidade em Física
Resumo:
Dissertação de mestrado integrado em Civil Engineering
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Relatório da atividade profissional de mestrado em Ciências - Formação Contínua de Professores (área de especialização em Física e Química)
Resumo:
El objetivo del presente proyecto es estudiar los procesos físicos y químicos del radical OH con compuestos orgánicos volátiles (COVs), con los cuales sea factible la formación de agregados de van der Waals (vdW) responsables de la curvatura en los gráficos de Arrhenius, empleando técnicas modernas, complementarias entre si y novedosas en el país. El problema será abordado desde tres perspectivas complementarias: 1) estudios cinéticos, 2) estudios mecanísticos y de distribución de productos y 3) estudios de la dinámica de los procesos físicos y químicos. La finalidad es alcanzar una mejor comprensión de los mecanismos que intervienen en el comportamiento químico de especies presentes en la atmósfera y obtener datos cinéticos de alta calidad que puedan alimentar modelos computacionales capaces de describir la composición de la atmósfera, presente y futura. Los objetivos son estudiar: 1) mediante fotólisis láser pulsada con detección por fluorescencia inducida por láser (PLP-LIF), en reactores de flujo, la cinética de reacción del radical OH(v”=0) con COVs que presentan gráficos de Arrhenius curvos con energías de activación negativas, tales como alcoholes insaturados, alquenos halogenados, éteres halogenados, ésteres alifáticos; 2) en una cámara de simulación de condiciones atmosféricas de gran volumen (4500 L), la identidad y el rendimiento de productos de las reacciones mencionadas, a fines de evaluar su impacto atmosférico y dilucidar los mecanismos de reacción; 3) mediante haces moleculares y espectroscopía láser, la estructura y reactividad de complejos de vdW entre alcoholes insaturados o aromáticos (cresoles) y el radical OH, como modelo de los aductos propuestos como responsables de la desviación al comportamiento de Arrhenius de las reacciones mencionadas; 4) mediante PLP-LIF y expansiones supersónicas, las constantes específicas estado a estado (ksts) de relajación/reacción del radical OH(v”=1-4) vibracionalmente excitado con los COVs mencionados. Los resultados experimentales obtenidos serán contrastados con cálculos ab-initio de estructura electrónica, los cuales apoyarán las interpretaciones, permitirán proponer estructuras de estados de transición y aductos colisionales, como así también calcular las frecuencias de vibración de los complejos de vdW para su posterior asignación en los espectros LIF y REMPI. Asimismo, los mecanismos de reacción propuestos y los parámetros cinéticos medidos experimentalmente serán comparados con aquellos obtenidos por cálculos teóricos. The aim of this project is to study the physical and chemical processes of OH radicals with volatile organic compounds (VOCs) with which the formation of van der Waals (vdW) clusters, responsible for the observed curvature in the Arrhenius plots, might be feasible. The problem will be addressed as follow : 1) kinetic studies; 2) products distribution and mechanistic studies and 3) dynamical studies of the physical and chemical processes. The purpose is to obtain a better understanding of the mechanisms that govern the chemical behavior of species present in the atmosphere and to obtain high quality kinetic data to be used as input to computational models. We will study: 1) the reaction kinetics of OH (v”=0) radicals with VOCs such as unsaturated alcohols, halogenated alkenes, halogenated ethers, aliphatic esters, which show curved Arrhenius plots and negative activation energies, by PLP-LIF, in flow systems; 2) in a large volume (4500 L) atmospheric simulation chamber, reaction products yields in order to evaluate their atmospheric impact and reaction mechanisms; 3) using molecular beams and laser spectroscopy, the structure and reactivity of the vdW complexes formed between the unsaturated or aromatic alcohols and the OH radicals as a model of the adducts proposed as responsible for the non-Arrhenius behavior; 4) the specific state-to-state relaxation/reaction rate constants (ksts) of the vibrationally excited OH (v”=1-4) radical with the VOCs by PLP-LIF and supersonic expansions. Ab-initio calculations will be carried out to support the interpretation of the experimental results, to obtain the transition state and collisional adducts structures, as well as to calculate the vibrational frequencies of the vdW complexes to assign to the LIF and REMPI spectra. Also, the proposed reaction mechanisms and the experimentally measured kinetic parameters will be compared with those obtained from theoretical calculations.
Resumo:
The general properties of POISSON distributions and their relations to the binomial distribuitions are discussed. Two methods of statistical analysis are dealt with in detail: X2-test. In order to carry out the X2-test, the mean frequency and the theoretical frequencies for all classes are calculated. Than the observed and the calculated frequencies are compared, using the well nown formula: f(obs) - f(esp) 2; i(esp). When the expected frequencies are small, one must not forget that the value of X2 may only be calculated, if the expected frequencies are biger than 5. If smaller values should occur, the frequencies of neighboroughing classes must ge pooled. As a second test reintroduced by BRIEGER, consists in comparing the observed and expected error standard of the series. The observed error is calculated by the general formula: δ + Σ f . VK n-1 where n represents the number of cases. The theoretical error of a POISSON series with mean frequency m is always ± Vm. These two values may be compared either by dividing the observed by the theoretical error and using BRIEGER's tables for # or by dividing the respective variances and using SNEDECOR's tables for F. The degree of freedom for the observed error is one less the number of cases studied, and that of the theoretical error is always infinite. In carrying out these tests, one important point must never be overlloked. The values for the first class, even if no concrete cases of the type were observed, must always be zero, an dthe value of the subsequent classes must be 1, 2, 3, etc.. This is easily seen in some of the classical experiments. For instance in BORKEWITZ example of accidents in Prussian armee corps, the classes are: no, one, two, etc., accidents. When counting the frequency of bacteria, these values are: no, one, two, etc., bacteria or cultures of bacteria. Ins studies of plant diseases equally the frequencies are : no, one, two, etc., plants deseased. Howewer more complicated cases may occur. For instance, when analising the degree of polyembriony, frequently the case of "no polyembryony" corresponds to the occurrence of one embryo per each seed. Thus the classes are not: no, one, etc., embryo per seed, but they are: no additional embryo, one additional embryo, etc., per seed with at least one embryo. Another interestin case was found by BRIEGER in genetic studies on the number os rows in maize. Here the minimum number is of course not: no rows, but: no additional beyond eight rows. The next class is not: nine rows, but: 10 rows, since the row number varies always in pairs of rows. Thus the value of successive classes are: no additional pair of rows beyond 8, one additional pair (or 10 rows), two additional pairs (or 12 rows) etc.. The application of the methods is finally shown on the hand of three examples : the number of seeds per fruit in the oranges M Natal" and "Coco" and in "Calamondin". As shown in the text and the tables, the agreement with a POISSON series is very satisfactory in the first two cases. In the third case BRIEGER's error test indicated a significant reduction of variability, and the X2 test showed that there were two many fruits with 4 or 5 seeds and too few with more or with less seeds. Howewer the fact that no fruit was found without seed, may be taken to indicate that in Calamondin fruits are not fully parthenocarpic and may develop only with one seed at the least. Thus a new analysis was carried out, on another class basis. As value for the first class the following value was accepted: no additional seed beyond the indispensable minimum number of one seed, and for the later classes the values were: one, two, etc., additional seeds. Using this new basis for all calculations, a complete agreement of the observed and expected frequencies, of the correspondig POISSON series was obtained, thus proving that our hypothesis of the impossibility of obtaining fruits without any seed was correct for Calamondin while the other two oranges were completely parthenocarpic and fruits without seeds did occur.