874 resultados para bronchodilating agent
Resumo:
During September 2011, post-emergence damping off of Swiss chard (Beta vulgaris subsp. cicla L.) was observed in a greenhouse in Villa del Prado (Spain). About 20% of the seedlings showed damping off symptoms. Lesions were initially water soaked, dark brown necrosis of crown tissue, irregular in shape and sunken in appearance on large plants, causing the infected seedlings to collapse and eventually die. Rhizoctonia solani was isolated consistently from symptomatic plants. After morphological and molecular identification of the isolates, pathogenicity was tested by placing agar plugs of four isolates adjacent to the stem at the three or four true leaf stage. In inoculated plants, brown crown and stem necrosis occurred while control plants did not show disease symptoms. Pathogenicity using non-germinated seeds was also tested. All four isolates produced extensive damping off when inoculated on non-germinated seeds. To our knowledge, this is the first report of damping off of Swiss chard caused by R. solani in Europe.
Resumo:
The Agent-Based Modelling and simulation (ABM) is a rather new approach for studying complex systems withinteracting autonomous agents that has lately undergone great growth in various fields such as biology, physics, social science, economics and business. Efforts to model and simulate the highly complex cement hydration process have been made over the past 40 years, with the aim of predicting the performance of concrete and designing innovative and enhanced cementitious materials. The ABM presented here - based on previous work - focuses on the early stages of cement hydration by modelling the physical-chemical processes at the particle level. The model considers the cement hydration process as a time and 3D space system, involving multiple diffusing and reacting species of spherical particles. Chemical reactions are simulated by adaptively selecting discrete stochastic simulation for the appropriate reaction, whenever that is necessary. Interactions between particles are also considered. The model has been inspired by reported cellular automata?s approach which provides detailed predictions of cement microstructure at the expense of significant computational difficulty. The ABM approach herein seeks to bring about an optimal balance between accuracy and computational efficiency.
Resumo:
This article presents the design, kinematic model and communication architecture for the multi-agent robotic system called SMART. The philosophy behind this kind of system requires the communication architecture to contemplate the concurrence of the whole system. The proposed architecture combines different communication technologies (TCP/IP and Bluetooth) under one protocol designed for the cooperation among agents and other elements of the system such as IP-Cameras, image processing library, path planner, user Interface, control block and data block. The high level control is modeled by Work-Flow Petri nets and implemented in C++ and C♯♯. Experimental results show the performance of the designed architecture.
Resumo:
The agent-based model presented here, comprises an algorithm that computes the degree of hydration, the water consumption and the layer thickness of C-S-H gel as functions of time for different temperatures and different w/c ratios. The results are in agreement with reported experimental studies, demonstrating the applicability of the model. As the available experimental results regarding elevated curing temperature are scarce, the model could be recalibrated in the future. Combining the agent-based computational model with TGA analysis, a semiempirical method is achieved to be used for better understanding the microstructure development in ordinary cement pastes and to predict the influence of temperature on the hydration process.