931 resultados para brain depth stimulation
Resumo:
One way we keep track of our movements is by monitoring corollary discharges or internal copies of movement commands. This study tested a hypothesis that the pathway from superior colliculus (SC) to mediodorsal thalamus (MD) to frontal eye field (FEF) carries a corollary discharge about saccades made into the contralateral visual field. We inactivated the MD relay node with muscimol in monkeys and measured corollary discharge deficits using a double-step task: two sequential saccades were made to the locations of briefly flashed targets. To make second saccades correctly, monkeys had to internally monitor their first saccades; therefore deficits in the corollary discharge representation of first saccades should disrupt second saccades. We found, first, that monkeys seemed to misjudge the amplitudes of their first saccades; this was revealed by systematic shifts in second saccade end points. Thus corollary discharge accuracy was impaired. Second, monkeys were less able to detect trial-by-trial variations in their first saccades; this was revealed by reduced compensatory changes in second saccade angles. Thus corollary discharge precision also was impaired. Both deficits occurred only when first saccades went into the contralateral visual field. Single-saccade generation was unaffected. Additional deficits occurred in reaction time and overall performance, but these were bilateral. We conclude that the SC-MD-FEF pathway conveys a corollary discharge used for coordinating sequential saccades and possibly for stabilizing vision across saccades. This pathway is the first elucidated in what may be a multilevel chain of corollary discharge circuits extending from the extraocular motoneurons up into cerebral cortex.
Resumo:
It is essential to keep track of the movements we make, and one way to do that is to monitor correlates, or corollary discharges, of neuronal movement commands. We hypothesized that a previously identified pathway from brainstem to frontal cortex might carry corollary discharge signals. We found that neuronal activity in this pathway encodes upcoming eye movements and that inactivating the pathway impairs sequential eye movements consistent with loss of corollary discharge without affecting single eye movements. These results identify a pathway in the brain of the primate Macaca mulatta that conveys corollary discharge signals.
Resumo:
The macaque frontal eye field (FEF) is involved in the generation of saccadic eye movements and fixations. To better understand the role of the FEF, we reversibly inactivated a portion of it while a monkey made saccades and fixations in response to visual stimuli. Lidocaine was infused into a FEF and neural inactivation was monitored with a nearby microelectrode. We used two saccadic tasks. In the delay task, a target was presented and then extinguished, but the monkey was not allowed to make a saccade to its location until a cue to move was given. In the step task, the monkey was allowed to look at a target as soon as it appeared. During FEF inactivation, monkeys were severely impaired at making saccades to locations of extinguished contralateral targets in the delay task. They were similarly impaired at making saccades to locations of contralateral targets in the step task if the target was flashed for < or =100 ms, such that it was gone before the saccade was initiated. Deficits included increases in saccadic latency, increases in saccadic error, and increases in the frequency of trials in which a saccade was not made. We varied the initial fixation location and found that the impairment specifically affected contraversive saccades rather than affecting all saccades made into head-centered contralateral space. Monkeys were impaired only slightly at making saccades to contralateral targets in the step task if the target duration was 1000 ms, such that the target was present during the saccade: latency increased, but increases in saccadic error were mild and increases in the frequency of trials in which a saccade was not made were insignificant. During FEF inactivation there usually was a direct correlation between the latency and the error of saccades made in response to contralateral targets. In the delay task, FEF inactivation increased the frequency of making premature saccades to ipsilateral targets. FEF inactivation had inconsistent and mild effects on saccadic peak velocity. FEF inactivation caused impairments in the ability to fixate lights steadily in contralateral space. FEF inactivation always caused an ipsiversive deviation of the eyes in darkness. In summary, our results suggest that the FEF plays major roles in (1) generating contraversive saccades to locations of extinguished or flashed targets, (2) maintaining contralateral fixations, and (3) suppressing inappropriate ipsiversive saccades.
Resumo:
Blast-induced Traumatic Brain Injury (bTBI) is the signature injury of the Iraq and Afghanistan wars; however, current understanding of bTBI is insufficient. In this study, novel analysis methods were developed to investigate correlations between external pressures and brain injury predictors. Experiments and simulations were performed to analyze placement of helmet-mounted pressure sensors. A 2D Finite Element model of a helmeted head cross-section was loaded with a blast wave. Pressure time-histories for nodes on the inner and outer surfaces of the helmet were cross-correlated to those inside the brain. Parallel physical experiments were carried out with a helmeted headform, pressure sensors, and pressure chamber. These analysis methods can potentially lead to better helmet designs and earlier detection and treatment of bTBI.
Resumo:
In addition to antibodies, Th1-type T cell responses are also important for long-lasting protection against pertussis. However, upon immunization with the current acellular vaccines, many children fail to induce Th1-type responses, potentially due to immunomodulatory effects of some vaccine antigens, such as filamentous haemagglutinin (FHA). We therefore analysed the ability of FHA to modulate immune functions of human monocyte-derived dendritic cells (MDDC). FHA was purified from pertussis toxin (PTX)-deficient or from PTX- and adenylate cyclase-deficient Bordetella pertussis strains, and residual endotoxin was neutralized with polymyxin B. FHA from both strains induced phenotypic maturation of human MDDC and cytokine secretion (IL-10, IL-12p40, IL-12p70, IL-23 and IL-6). To identify the FHA domains responsible for MDDC immunomodulation, MDDC were stimulated with FHA containing a Gly→Ala substitution at its RGD site (FHA-RAD) or with an 80-kDa N-terminal moiety of FHA (Fha44), containing its heparin-binding site. Whereas FHA-RAD induced maturation and cytokine production comparable to those of FHA, Fha44 did not induce IL-10 production, but maturated MDDC at least partially. Nevertheless, Fha44 induced the secretion of IL-12p40, IL-12p70, IL-23 and IL-6 by MDDC, albeit at lower levels than FHA. Thus, FHA can modulate MDDC responses in multiple ways, and IL-10 induction can be dissociated from the induction of other cytokines.
Resumo:
Although steroid hormones are known to play a predominant role in the regulation of cell growth in hormone-sensitive cancers, their mechanisms of action, especially their interaction with growth factors and/or growth inhibitors, is poorly understood. We have recently observed that the effects of androgens and estrogens on the expression of the major protein found in human breast gross cystic disease fluid, protein-24, are opposite to their respective action on cell proliferation in human breast cancer cell lines. Somewhat surprisingly, the recent elucidation of the amino acid sequence of this progesterone binding protein reveals that this tumor marker is apolipoprotein D (apo D), a member of a superfamily of lipophilic ligand carrier proteins. The present study was designed to determine whether apo D is secreted by human prostate cancer cells and could thus be a new marker of steroid action in these cancer cells, and whether the sex steroid-induced stimulation of apo D secretion coincides with inhibition of cell proliferation. We took advantage of the biphasic pattern of the effect of steroids on the proliferation of the human prostate cancer LNCaP cell line, which offers the opportunity to discriminate between positive and negative steroid receptor-regulated cell growth processes. A 10-day exposure to low concentrations of dihydrotestosterone and testosterone caused a potent stimulation of LNCaP cell proliferation, whereas incubation with higher concentrations of these androgens led to a progressive decrease in cell proliferation towards basal levels. The biphasic action of androgens was also observed on apo D secretion, the effects on apo D secretion being inversely related to their action on LNCaP cell proliferation. Similar opposite biphasic effects were also observed with 9 other steroids, thus indicating that the stimulation of secretion of this new biochemical marker coincides with inhibition of cell proliferation in LNCaP human prostatic cancer cells.
Resumo:
The relationship between date of first description and size, geographic range and depth of occurrence is investigated for 18 orders of marine holozooplankton (comprising over 4000 species). Results of multiple regression analyses suggest that all attributes are linked, which reflects the complex interplay between them. Partial correlation coefficients suggest that geographic range is the most important predictor of description date, and shows an inverse relationship. By contrast, size is generally a poor indicator of description date, which probably mirrors the size-independent way in which specimens are collected, though there is clearly a positive relationship between both size and depth (for metabolic/trophic reasons), and size and geographic range. There is also a positive relationship between geographic range and depth that probably reflects the near constant nature of the deep-water environment and the wide-ranging currents to be found there. Although we did not explicitly incorporate either abundance or location into models predicting the date of first description, neither should be ignored.
Resumo:
Hormesis is the name given to the stimulatory effects caused by low levels of potentially toxic agents. When this phenomenon was first identified it was called the Arndt-Schulz Law or Hueppe's Rule, because it was thought to occur generally. Although this generalisation is not accepted today, there has never been more evidence in its support, justifying a re-examination of the phenomenon. Evidence from the literature shows that not only has growth hormesis been observed in a range of taxa after exposure to a variety of agents, but also that the dose-response data have a consistent form. While there are a number of separate hypotheses to explain specific instances of hormesis, the evidence presented here suggests that different examples might have a common explanation, and the possibility of a general theory is considered.