906 resultados para black sucupira
Resumo:
For the first time deep-sea mooring stations with sediment traps were deployed in the northeast Black Sea. One sediment trap for long-term studies was located at Station 1 (44°15'N, 37°43'E, deployment depth 1800 m, depth 1900 m). The trap collected sinking sedimentary material from January to May 1998. Material collectors were changed every 15 days. Other stations with sediment traps for short-term studies (September-October 1999) were located on the shelf: Station 2 (44°16'N, 38°37'E, deployment depth 45 m, depth 50 m) and on the bottom of the canyon: Station 3 (44°16'N, 38°22'E, deployment depth 1145 m, depth 1150 m), Station 4 (44°11'N, 38°21'E, deployment depths 200, 1550, 1650 m, depth 1670 m). Collected material indicates that vertical particle fluxes are controlled by seasonal changes of in situ production and by dynamics of terrigenous matter input. Higher vertical particle flux of carbonate and biogenic silica was in spring due to bloom of plankton organisms. Maximum of coccolith bloom is in April-May. Bloom of diatoms begins in March. In winter and autumn lithogenic material dominates in total flux. Its amount strongly depends on storms and river run-off. Suspended particle material differs from surface shelf sediments by finer particles (mainly clay fraction) and high content of clay minerals and biogenic silica. This material may form lateral fluxes with higher concentration of particles transported along the bottom of deep-sea canyons from the shelf to the deep basin within the nepheloid layer. In winter such transportation of sedimentary material is more intensive due to active vertical circulation of water masses.
Resumo:
The Est Constanta 1981-1985 dataset contains zooplankton data collected allong a 5 station transect in front of the city Constanta (44°10'N, 28°41.5'E - EC1; 44°10'N, 28°47'E - EC2; 44°10'N, 28°54'E - EC3; 44°10'N, 29°08'E - EC4; 44°10'N, 29°22'E - EC5). Zooplankton sampling was undertaken at 5 stations where samples were collected using a Juday closing net in the 0-10, 10-25, 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.