996 resultados para bean shoot borer
Resumo:
Glyoxysomes are specialized peroxisomes present in various plant organs such as germinating cotyledons or senescing leaves. They are the site of beta-oxidation and of the glyoxylate cycle. These consecutive pathways are essential to the maintenance of gluconeogenesis initiated by the degradation of reserve or structural lipids. In contrast to mitochondrial beta-oxidation, which is prevalent in animal cells, glyoxysomal beta-oxidation and the glyoxylate cycle have no direct access to the mitochondrial respiratory chain because of the impermeability of the glyoxysomal membrane to the reduced cofactors. The necessity of NAD(+) regeneration can conceivably be fulfilled by membrane redox chains and/or by transmembrane shuttles. Experimental evidence based on the active metabolic roles of higher plant glyoxysomes and yeast peroxisomes suggests the coexistence of two mechanisms, namely a reductase/peroxidase membrane redox chain and a malate/aspartate shuttle susceptible to transfer electrons to the mitochondrial ATP generating system. Such a model interconnects beta-oxidation, the glyoxylate cycle, the respiratory chain and gluconeogenesis in such a way that glyoxysomal malate dehydrogenase is an essential and exclusive component of beta-oxidation (NAD(+) regeneration). Consequently, the classical view of the glyoxylate cycle is superseded by a tentative reactional scheme deprived of cyclic character.
Resumo:
Distinct molecular mechanisms integrate changes in ambient temperature into the genetic pathways that govern flowering time in Arabidopsis thaliana. Temperature-dependent eviction of the histone variant H2A.Z from nucleosomes has been suggested to facilitate the expression of FT by PIF4 at elevated ambient temperatures. Here we show that, in addition to PIF4, PIF3 and PIF5, but not PIF1 and PIF6, can promote flowering when expressed specifically in phloem companion cells (PCC), where they can induce FT and its close paralog, TSF. However, despite their strong potential to promote flowering, genetic analyses suggest that the PIF genes seem to have only a minor role in adjusting flowering in response to photoperiod or high ambient temperature. In addition, loss of PIF function only partially suppressed the early flowering phenotype and FT expression of the arp6 mutant, which is defective in H2A.Z deposition. In contrast, the chemical inhibition of gibberellic acid (GA) biosynthesis resulted in a strong attenuation of early flowering and FT expression in arp6. Furthermore, GA was able to induce flowering at low temperature (15°C) independently of FT, TSF, and the PIF genes, probably directly at the shoot apical meristem. Together, our results suggest that the timing of the floral transition in response to ambient temperature is more complex than previously thought and that GA signaling might play a crucial role in this process.
Resumo:
All plants are typically confronted to simultaneous biotic and abiotic stress throughout their life cycle. Low inorganic phosphate (Pi) is the most common nutrient deficiency limiting plant growth in natural and agricultural ecosystems while insect herbivory accounts for major losses in plant productivity and impacts on ecological and evolutionary changes in plant populations. Here we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defence against insect herbivory. The phol mutant is impaired in the translocation of Pi from roots to shoots and shows the typical symptoms associated with Pi deficiency, including high anthocyanin and poor shoot growth. These phol shoot phenotypes were significantly attenuated by blocking the JA biosynthesis or signalling pathways. Wounded phol leaves hyper-accumulated JA in comparison to wild type, leading to increased resistance against the generalist herbivore Spodoptera littoralis. Pi deficiency also triggered enhanced resistance to herbivory in wild-type Arabidopsis as well as tomato and tobacco, revealing that the link between Pi deficiency and JA-mediated herbivory resistance is conserved in a diversity of plants, including crops. We performed a phol suppressor screen to identify new components involved in the adaptation of plants to Pi deficiency. We report that the THO RNA TRANSCRIPTION AND EXPORT (THO/TREX) complex is a crucial component involved in modulating the Pi- deficiency response. Knockout mutants of at least three members of the THO/TREX complex, including TEX1, HPR1, and TH06, can suppress the phol shoot phenotype. Grafting experiments showed that loss of function of TEX1 only in the root was sufficient to suppress the reduced shoot growth phenotype of phol while maintaining low Pi contents. This indicates that TEX1 is involved in a long distance root-to-shoot signalling component of the Pi-deficiency response. We identified a small MYB-like transcription factor, RAD LIKE 3 (RL3), as a potential downstream target of the THO/TREX complex. RL3 expression is induced in phol mutants but attenuated in phol-7 texl-4 double mutants. Identical to knockout mutants of the THO/TREX complex, rl3 mutants can suppress the phol shoot phenotypes. Interestingly, RL3 is induced during Pi deficiency and is described in the literature as likely being mobile. It is therefore a promising new candidate involved in the root-to-shoot Pi-deficiency signalling response. Finally, we report that PHOl and its homologue PH01:H3 are involved in the co-regulation of Pi and zinc (Zn) homeostasis. PH01;H3 is up-regulated in response to Zn deficiency and, like PHOl, is expressed in the root vascular cylinder and localizes to the Golgi when expressed transiently in tobacco cells. The phol;h3 mutant accumulates more Pi as compared to wild-type when grown in Zn-deficient medium, but this increase is abolished in the phol phol;h3 double mutant. These results suggest that PH01;H3 restricts the PHOl-mediated root-to-shoot Pi transfer in responsé to Zn deficiency. Résumé Au cours de leur cycle de vie, toutes les plantes sont généralement confrontées à divers stress biotiques et abiotiques. La carence nutritionnelle la plus fréquente, limitant la croissance des plantes dans les écosystèmes naturels et agricoles, est la faible teneur en phosphate inorganique (Pi). Au niveau des stress biotiques, les insectes herbivores sont responsables de pertes majeures de rendement et ont un impact considérable sur les changements écologiques et évolutifs dans les populations des plantes. Au cours de ce travail, nous avons mis en évidence que les plantes en situation de carence en Pi induisent la voie de l'acide jasmonique (JA) et augmentent leur défense contre les insectes herbivores. Le mutant phol est déficient dans le transport du phosphate des racines aux feuilles et démontre les symptômes typiques associés à la carence, tels que la forte concentration en anthocyane et une faible croissance foliaire. Ces phénotypes du mutant phol sont significativement atténués lors d'un blocage de la voie de la biosynthèse ou des voies de signalisation du JA. La blessure des feuilles induit une hyper-accumulation de JA chez phol, résultant en une augmentation de la résistance contre l'herbivore généraliste Spodoptera littoralis. Outre Arabidopsis, la carence en Pi induit une résistance accrue aux insectes herbivores aussi chez la tomate et le tabac. Cette découverte révèle que le lien entre la carence en Pi et la résistance aux insectes herbivores via le JA est conservé dans différentes espèces végétales, y compris les plantes de grandes cultures. Nous avons effectué un crible du suppresseur de phol afin d'identifier de nouveaux acteurs impliqués dans l'adaptation de la plante à la carence en Pi. Nous rapportons que le complexe nommé THO RNA TRANSCRIPTION AND EXPORT (THO/TREX) est un élément crucial participant à la réponse des feuilles à la carence en Pi. Les mutations d'au moins trois des membres que composent le complexe THO/TREX, incluant TEX1, HPR1 et 77/06, peuvent supprimer le phénotype de phol. Des expériences de greffes ont montré que la perte de fonction de TEX1, seulement dans la racine, est suffisante pour supprimer le phénotype de la croissance réduite des parties aériennes observé chez le mutant phol, tout en maintenant de faibles teneurs en Pi foliaire. Ceci indique que TEX1 est impliqué dans la signalisation longue distance entre les racines et les parties aériennes. Nous avons identifié un petit facteur de transcription proche de la famille des MYB, RAD LIKE 3 (RL3), comme une cible potentielle en aval du complexe THO / TREX. L'expression du gène RL3 est induite dans le mutant phol mais atténuée dans le double mutant phol-7 texl-4. Exactement comme les plantes mutées d'un des membres du complexe THO/TREX, le mutant rl3 peut supprimer le phénotype foliaire de phol. RL3 est induit au cours d'une carence en Pi et est décrit dans la littérature comme étant potentiellement mobile. Par conséquent, il serait un nouveau candidat potentiellement impliqué dans la réponse longue distance entre les racines et les parties aériennes lors d'un déficit en Pi. Enfin, nous reportons que PHOl et son homologue PHOl: H3 sont impliqués dans la co- régulation de l'homéostasie du Pi et du zinc (Zn). PHOl; H3 est sur-exprimé en réponse au déficit en Zn et, comme PHOl, est exprimé dans les tissus vasculaires des racines et se localise dans l'appareil de Golgi lorsqu'il est exprimé de manière transitoire dans des cellules de tabac. Le mutant phol; h3 accumule plus de Pi par rapport aux plantes sauvages lorsqu'il est cultivé sur un milieu déficient en Zn, mais cette augmentation en Pi est abolie dans le double mutant phol phol; h3. Ces résultats suggèrent qu'en réponse à une carence en Zn, PHOl; H3 limite l'action de PHOl et diminue le transfert du Pi des racines aux parties aériennes.
Resumo:
OBJECTIVE: The aim of this paper was to examine sexual knowledge, concerns and needs of youth with spina bifida (SB) to inform the medical community on ways to better support their sexual health. METHODS: As part of the Video Intervention/Prevention Assessment (VIA) - transitions, a prospective cohort study, 309 h of video data were collected from 14 participants (13-28 years old) with SB. Participants were loaned a video camcorder for 8-12 weeks to shoot visual narratives about any aspects of their lives. V/A visual narratives were analysed with grounded theory using NVivo. RESULTS: Out of 14 participants, 11 (six women) addressed issues surrounding romantic relationships and sexuality in their video clips. Analysis revealed shared concerns, questions and challenges regarding sexuality gathered under four main themes: romantic relationships, sexuality, fertility and parenthood, and need for more talk on sexuality. CONCLUSIONS: Youth with SB reported difficulties in finding answers to questions regarding their sexuality, romantic relationships and fertility. This study revealed a need for help from the medical community to inform and empower youth with SB in the area of sexual health. Through sexual and reproductive health education with patients and parents starting at an early age, medical providers can further encourage healthy emotional and physical development in adolescents transitioning into adulthood.
Resumo:
Aim of the study: Mycorrhizal fungi in Mediterranean forests play a key role in the complex process of recovery after wildfires. A broader understanding of an important pyrophytic species as Pinus pinaster and its fungal symbionts is thus necessary for forest restoration purposes. This study aims to assess the effects of ectomycorrhizal symbiosis on maritime pine seedlings and how fire severity affects fungal colonization ability. Area of study: Central Spain, in a Mediterranean region typically affected by wildfires dominated by Pinus pinaster, a species adapted to fire disturbance. Material and Methods: We studied P. pinaster root apexes from seedlings grown in soils collected one year after fire in undisturbed sites, sites moderately affected by fire and sites highly affected by fire. Natural ectomycorrhization was observed at the whole root system level as well as at two root vertical sections (0-10 cm and 10-20 cm). We also measured several morphometric traits ( tap root length, shoot length, dry biomass of shoots and root/shoot ratio), which were used to test the influence of fire severity and soil chemistry upon them. Main results: Ectomycorrhizal colonization in undisturbed soils for total and separated root vertical sections was higher than in soils that had been affected by fire to some degree. Inversely, seedling vegetative size increased according to fire severity. Research highlights: Fire severity affected soil properties and mycorrhizal colonization one year after occurrence, thus affecting plant development. These findings can contribute to a better knowledge of the factors mediating successful establishment of P. pinaster in Mediterranean forests after wildfires.
Resumo:
In this study we describe an experimental procedure based on a chemical industrial process of soya-bean oil extraction applied in general chemistry for undergraduate students. The experiment was planned according to the Science, Technology and Society (STS) approach to teach basic chemical concepts and provide grounding in the management of environmental care. The use of real life chemistry problems seems to salient the relevance of chemistry to our students and enhances their motivation to learn both the practical and theoretical components of the discipline.
Resumo:
Phytochemical investigation of the aerial parts and roots of Mucuna cinerea led to the isolation of a mixture of fatty acids, triacylglicerols, beta-sitosterol, stigmasterol, stigmasterol glucoside, daucosterol, asperglaucide (4) and the isoflavonoids prunetin (1), genistein (2), medicarpin (3), daidzein (5), 7-O-alpha-glycopiranosyl daidzein (6). An in vitro bioassay was carried out with compounds 1-4, at the concentration of 50 and 5 mug mL-1 against the phytonematodes M. incognita and H. glycines. Although the four compounds showed some nematocidal property, the most active was (1), causing 70% mortality of M. incognita at the concentration of 50 mug mL-1.
Resumo:
The use of factorial design was evaluated for optimization of focused-microwave-assisted digestion of bean samples. Calcium, Fe, Mg, Mn and Zn percentual recoveries were determined in digestates after focused-microwave-assisted digestion according to factorial design procedures. A cavity microwave digestion was carried out to certify the elemental compositions obtained. The accuracy was checked using a standard reference material, the NIST SRM 8433 - Corn Bran. Results are in agreement with certified values at the 95% confidence limit when the Student t-test was used. Volumes of nitric and sulfuric acid, temperature, and the interplay between HNO3 and H2SO4 initial volumes were significant variables according to P-values in the analysis of variance (ANOVA).
Resumo:
This work aimed at evaluating the contents of extractable Cd, Pb, Zn and Cu with a solution of DTPA (diethyleneaminopentacetic acid) and to relate them with the production of dry material and grain production of bean plants under two conditions of experimentally contaminated soil materials with Cd, Pb, Cu and Zn: (i) samples of distrofic red latosol and (ii) humic yellow-red latosol. A decrease in the yield of dry matter was observed for all treatments, if compared with the zero-dose control sample; the grain yield was affected for the soil samples treated with Cd and Cu but only slightly for those treated with Pb and Zn.
Resumo:
The castor bean cake is rich in starch (48 ± 0.53%) and bears a problem linked to the occurrence of a toxic protein (ricin). The chemical hydrolysis (ratio solid:liquid = 1:6; H2SO4= 0.1 mol L-1; 120 °C; 40 min) generated a medium with 27 g L-1 of reducing sugars (hydrolysis efficiency= 32%). The hydrolyzed product was fermented and produced 11 g L-1 of ethanol (volumetric productivity=1.38 g L-1 h-1 and ethanol yield on substrate consumed=0.45 g g-1). In vivo experiments (DL50) revealed a reduction of roughly 240 times in the CBC toxicity (2.11 µg g-1).
Resumo:
This article presents a bibliographic review of research carried out on different alternative processes for biodiesel production. The supercritical and subcritical (non catalytic) reaction conditions, the use of solid basic, solid acid and other heterogeneous catalysts, including the use of immobilized enzymes and whole-cell catalysts are also critically compared with the traditional homogeneous alkaline or acid catalysts that are common on industrial applications. Advantages and limitations of all these processes for the transference from the laboratory to the industry are discussed. A correlation of the chemical composition with the quality parameters of the produced biodiesel is done with aim to stablish adequate procedures for the right selection of the raw-material. Castor bean oil is used as an example of inappropriate oil in order to produce a B100 that fulfill all the international physico-chemical quality standards. In this article are presented research results to adequate the values of viscosity, density and iodine number of the castor and soybean biodiesel to the international standard limits by means blending these both biodiesels at the right ratio.
Resumo:
The black, green and sour coffee defect (PVA) contributes with 20% of the total coffee production. It should be separate from the normal coffee grains in order to improve the final quality of the beverage. In this way, the present work has the objective to use the PVA reject for the production of activated carbon. The activated carbon (CA) was prepared from PVA defect using zinc chloride as activating agent. The prepared material (CA PVA) was characterized and the adsorption tests were carried out using as organic models methylene blue (AM) and reactive red (VR). The CA PVA revealed to be more efficient in the removal of the organic contaminants compared to a commercial activated carbon.