957 resultados para bandwidth AMSC: 11T71,94A15,14G50
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in the harsh environment found in combustion systems and automotive engine exhausts, large wire diameters are required and consequently the measurement bandwidth is reduced. This paper describes two new algorithmic compensation techniques based on blind deconvolution to address this loss of high-frequency signal components using the measurements from two thermocouples. In particular, a continuous-time approach is proposed, combined with a cross-relation blind deconvolution for parameter estimation. A feature of this approach is that no a priori assumption is made about the time constant ratio of the two thermocouples. The advantages, including small estimation variance and limitations of the method, are highlighted using results from simulation and test rig studies.
Resumo:
Plane wave scattering from a flat surface consisting of two periodic arrays of ring elements printed on a grounded dielectric sheet is investigated. It is shown that the reflection phase variation as a function of ring diameter is controlled by the difference in the centre resonant frequency of the two arrays. Simulated and measured results at X-band demonstrate that this parameter can be used to reduce the gradient and improve the linearity of the reflection phase versus ring size slope. These are necessary conditions for the re-radiating elements to maximise the bandwidth of a microstrip reflectarray antenna. The scattering properties of a conventional dual resonant multilayer structure and an array of concentric rings printed on a metal backed dielectric substrate are compared and the trade-off in performance is discussed.
Resumo:
A new quadrifilar antenna has been developed for generating circularly polarized backfire radiation. The antenna consists of two orthogonal rectangular conducting loops, each incorporating capacitive coupling and fed using either a single or two coaxial cables. Though the geometry is much simpler than a conventional quadrifilar helix antenna, the radiation pattern performance is very similar. Measured and simulated patterns are compared for two antennas with different feed arrangements. It is shown that the resonant structure can produce a cardioid pattern with a directivity of 4.5 dB (120 3-dB beamwidth) and a front-to-back ratio of more than 20 dB at the center operating frequency. A 10% impedance bandwidth (VSWR
Resumo:
Closing feedback loops using an IEEE 802.11b ad hoc wireless communication network incurs many challenges sensitivity to varying channel conditions and lower physical transmission rates tend to limit the bandwidth of the communication channel. Given that the bandwidth usage and control performance are linked, a method of adapting the sampling interval based on an 'a priori', static sampling policy has been proposed and, more significantly, assuring stability in the mean square sense using discrete-time Markov jump linear system theory. Practical issues including current limitations of the 802.11 b protocol, the sampling policy and stability are highlighted. Simulation results on a cart-mounted inverted pendulum show that closed-loop stability can be improved using sample rate adaptation and that the control design criteria can be met in the presence of channel errors and severe channel contention.
Resumo:
The generation of extremely bright coherent X-ray pulses in the femtosecond and attosecond regime is currently one of the most exciting frontiers of physics - allowing, for the first time, measurements with unprecedented temporal resolution(1-6). Harmonics from laser - solid target interactions have been identified as a means of achieving fields as high as the Schwinger limit(2,7) (E = 1.3 x 10(16) V m(-1)) and as a highly promising route to high-efficiency attosecond (10(-18) s) pulses(8) owing to their intrinsically phase-locked nature. The key steps to attain these goals are achieving high conversion efficiencies and a slow decay of harmonic efficiency to high orders by driving harmonic production to the relativistic limit(1). Here we present the first experimental demonstration of high harmonic generation in the relativistic limit, obtained on the Vulcan Petawatt laser(9). High conversion efficiencies (eta> 10(-6) per harmonic) and bright emission (> 10(22) photons s(-1) mm(-2) mrad(-2) (0.1% bandwidth)) are observed at wavelengths <4 nm ( the 'water-window' region of particular interest for bio-microscopy).
Resumo:
The harsh environment presented by engines, particularly in the exhaust systems, often necessitates the use of robust and therefore low bandwidth temperature sensors. Consequently, high frequencies are attenuated in the output. One technique for addressing this problem involves measuring the gas temperature using two sensors with different time-constants and mathematically reconstructing the true gas temperature from the resulting signals. Such a technique has been applied in gas turbine, rocket motor and combustion research. A new reconstruction technique based on difference equations has been developed and its effectiveness proven theoretically. The algorithms have been successfully tested and proven on experimental data from a rig that produces cyclic temperature variations. These tests highlighted that the separation of the thermocouple junctions must be very small to ensure that both sensors are subjected to the same gas temperatures. Exhaust gas temperatures were recorded by an array of thermocouples during transient operation of a high performance two-stroke engine. The results show that the increase in bandwidth arising from the dual sensor technique allowed accurate measurement of exhaust gas temperature with relatively robust thermocouples. Finally, an array of very fine thermocouples (12.5 - 50 microns) was used to measure the in-cycle temperature variation in the exhaust.
Resumo:
A novel tag computation circuit for a credit based Self-Clocked Fair Queuing (SCFQ) Scheduler is presented. The scheduler combines Weighted Fair Queuing (WFQ) with a credit based bandwidth reallocation scheme. The proposed architecture is able to reallocate bandwidth on the fly if particular links suffer from channel quality degradation .The hardware architecture is parallel and pipelined enabling an aggregated throughput rate of 180 million tag computations per second. The throughput performance is ideal for Broadband Wireless Access applications, allowing room for relatively complex computations in QoS aware adaptive scheduling. The high-level system break-down is described and synthesis results for Altera Stratix II FPGA technology are presented.
Resumo:
We show that by introducing a gap at the center of the helical sections (where the current is minimum) of a lambda/2 quadrifilar helix antenna (QHA) and varying the axial length and radial gap between the overlapping volutes, the antenna gives a 28% impedance bandwidth which is nine times the bandwidth of a conventional QHA. A 16% bandwidth with a front to back ratio of >= 14 dB is achievable with 5-14% reduction in the size of the QHA. The structure can yield a monopole radiation pattern suitable for terrestrial applications or a hemispherical pattern suitable for satellite use. The simulation results are validated by measurements at L-band.
Resumo:
A dynamically adaptive radar absorber is described which is based on a periodic array of microstrip patches that are printed on a 500 mu m-thick liquid crystal substrate. The measured reflectivity of the structure is less than -38 dB with a 200 MHz -10 dB bandwidth at 10.19 GHz when a +4 DC bias is applied. It is shown that a 34 dB reduction in signal loss occurs when the bias voltage is increased to 20 V.
Resumo:
The impedance and radiation pattern parameters of a lambda/2 quadrifilar helix antenna (QHA) with turn angles in the range 0 degrees to 235 degrees are analyzed. It is shown that by selecting the helix turn angle to satisfy the minimum bandwidth and beamwidth requirements, an improved electrical performance and a reduction in the physical size of the antenna is obtained. This is demonstrated by comparing the performance of a conventional half turn QHA with structures having a smaller pitch length. The computed results are validated by experimental data at L-band.
Resumo:
Introduction: The quadrifilar helix antenna (QHA) is used widely for terrestrial [1] and space communication systems [2], where it is necessary to generate a circularly polarised cardioid-shaped radiation pattern with a high front-to-back ratio and low cross-polarisation. The radiating structure comprises four helical conductors which are excited in phase quadrature at the feed point, which is usually located at the centre of the top radials. The physical size of the quadrifilar antenna can be reduced by dielectric loading [3] or by meandering the printed linear elements [4]. However, in the former arrangement dielectric absorption reduces the radiation efficiency of the antenna, and the latter technique is not suitable for constructing free standing wire structures, which are normally used for spacecraft payloads in the VHF and UHF bands [2]. This Letter shows that a significant reduction in the axial length of a 1/2 turn half-wavelength QHA can be achieved by modifying the geometry of the helices in the region around the midpoint where a current null exists. Simulated and experimental results at L band are used to show that a size reduction of up to 15% is possible without significantly degrading the pattern shape and the bandwidth.
Resumo:
The future convergence of voice, video and data applications on the Internet requires that next generation technology provides bandwidth and delay guarantees. Current technology trends are moving towards scalable aggregate-based systems where applications are grouped together and guarantees are provided at the aggregate level only. This solution alone is not enough for interactive video applications with sub-second delay bounds. This paper introduces a novel packet marking scheme that controls the end-to-end delay of an individual flow as it traverses a network enabled to supply aggregate- granularity Quality of Service (QoS). IPv6 Hop-by-Hop extension header fields are used to track the packet delay encountered at each network node and autonomous decisions are made on the best queuing strategy to employ. The results of network simulations are presented and it is shown that when the proposed mechanism is employed the requested delay bound is met with a 20% reduction in resource reservation and no packet loss in the network.
Resumo:
Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimidazolium. trifluoromethylsulfonate ([C(4)mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C(4)mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of similar to 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of root(rho eta) approximate to 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids.
Resumo:
We present results of wavepacket simulations for multiphoton ionization in argon. A single active electron model is applied to estimate the single-electron ionization rates and photoelectron energy distributions for lambda = 390 nm light with intensities up to I = 2 x 10(14) W cm(-2). The multiphoton ionization rates are compared with R-matrix Floquet calculations and found to be in very good agreement. The photoelectron energy distribution is used to study the nature of ionization at the higher intensities. Our results are consistent with recent calculations and experiments which show the imprint of the tunnelling process in the multiphoton regime. For few-cycle intense pulses, we find that the strong modulation of intensity and increased bandwidth leads to dynamic mixing of the 3d and 5s resonances.
Resumo:
Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate and they introduce a zero degrees reflection phase shift to incident waves. In this paper the AMC operation of single-layer arrays without vias is studied using a resonant cavity model and a new application to high-gain printed antennas is presented. A ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines. The bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated. Planar AMC surfaces are used for the first time as the ground plane in a high-gain microstrip patch antenna with a partially reflective surface as superstrate. A significant reduction of the antenna profile is achieved. A ray theory approach is employed in order to describe the functioning of the antenna and to predict the existence of quarter wavelength resonant cavities.