948 resultados para autosomal recessive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder characterized by the development of retinal and central nervous system hemangioblastoma, renal cell carcinoma (RCC), pheochromocytoma and pancreatic islet cell tumors (PICT). The VHL gene maps to chromosome 3p25 and has been shown to be mutated in 57% of sporadic cases of RCC, implicating VHL in the genesis of RCC. We report a multigeneration VHL kindred in which four affected female siblings developed PICT at early ages. Analysis of the three coding exons of the VHL gene in this family revealed a single, missense mutation in codon 238. Inheritance of the 238 mutation has been reported to correlate with a 62% risk of pheochromocytoma development. In this kindred, all affected individuals carried the mutation as well as one additional sibling who showed no evidence of disease. Clinical screening of this individual indicated small ($<$1 cm) pancreatic and kidney tumors. Results suggest that inheritance of the codon 238 mutation does not correlate with early onset pheochromocytoma. Rather, the only individual in the pedigree with pheochromocytoma was the proband's mother who developed bilateral pheochromocytoma at the age of 62. Thus, the VHL codon 238 mutation may predispose to late onset pheochromocytoma in this family; however, it does not explain the preponderance of PICT in the third generation since this mutation has not been reported to increase the risk of developing pancreatic lesions. This suggests that inheritance of the codon 238 mutation and subsequent somatic inactivation of the wild type allele of the VHL gene may not be sufficient to explain the initiation and subsequent progression to malignancy in VHL-associated neoplasms. Since the two tumor types that most frequently progress to malignancy are RCC and PICT, we asked whether loss of heterozygosity (LOH) could be detected proximal to the VHL gene on chromosome 3 in distinct regions of 3p previously implicated by LOH and cytogenetic studies to contain tumor suppressor loci for RCC. LOH was performed on high molecular weight DNA isolated from peripheral blood and frozen tumor tissue of family members using microsatellite markers spanning 3p. Results indicated LOH for all informative 3p loci in tumor tissue from affected individuals with PICT. LOH was detected along the entire length of the chromosome arm and included the proximal region of 3p13-14.2 implicated in the hereditary form of renal cell carcinoma.^ If 3p LOH were a critical event in pancreatic islet cell tumorigenesis, then it should be expected that LOH in sporadic islet cell tumors would also be observed. We expanded LOH studies to include sporadic cases of PICT. Consistent LOH was observed on 3p with a highest frequency LOH in the region 3p21.2. This is the first evidence for an association between chromosome 3 loci and pancreatic islet cell tumorigenesis. (Abstract shortened by UMI.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PAX6 is a transcription activator that regulates eye development in animals ranging from Drosophila to human. The C-terminal region of PAX6 is proline/serine/threonine-rich (PST) and functions as a potent transactivation domain when attached to a heterologous DNA-binding domain of the yeast transcription factor, GAL4. The PST region comprises 152 amino acids encoded by four exons. The transactivation function of the PST region has not been defined and characterized in detail by in vitro mutagenesis. I dissected the PST domain in two independent systems, a heterologous system using a GAL4 DNA-binding site and the native system of PAX6. In both systems, the results show consistently that all four constituent exons of the PST domain are responsible for the transactivation function. The four exon fragments act cooperatively to stimulate transcription, although none of them can function individually as an independent transactivation domain. Combinations of two or more exon fragments can reconstitute substantial transactivation activity when fused to the DNA-binding domain of GAL4, but they surprisingly do not produce much activity in the context of native PAX6 even though the mutant PAX6 proteins are stable and their DNA-binding function remains unaffected. I conclude that the PAX6 protein contains an unusually large transactivation domain that is evolutionarily conserved to a high degree, and that its full transactivation activity relies on the cooperative action of the four exon fragments.^ Most PAX6 mutations detected in patients with aniridia result in truncations of the protein. Some of the truncation mutations occur in the PST region of PAX6, resulting in mutant proteins that retain their DNA-binding ability but have no significant transactivation activity. It is not clear whether such mutants are true loss-of-function or dominant-negative mutants. I show that these mutants are dominant-negative if they are coexpressed with wild-type PAX6 in cultured cells and that the dominant-negative effects result from enhanced DNA-binding ability of these mutants due to removal of the PST domain. These mutants are able to repress the wild-type PAX6 activity not only at target genes with paired domain binding sites but also at target genes with homeodomain binding sites.^ Mutations in the human PAX6 gene produce various phenotypes, including aniridia, Peters' anomaly, autosomal dominant keratitis, and familial foveal dysplasia. The various phenotypes may arise from different mutations in the same gene. To test this theory, I performed a functional analysis of two missense mutations in the paired domain: the R26G mutation reported in a case of Peters' anomaly, and the I87R mutation identified in a patient with aniridia. While both the R26 and the I87 positions are conserved in the paired boxes of all known PAX genes, X-ray crystallography has shown that only R26 makes contact with DNA. I found that the R26G mutant failed to bind a subset of paired domain binding sites but, surprisingly, bound other sites and successfully transactivated promoters containing those sites. In contrast, the I87R mutant had lost the ability to bind DNA at all tested sites and failed to transactivate promoters. My data support the haploinsufficiency hypothesis of aniridia, and the hypothesis that R26G is a hypomorphic allele. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coronary heart disease (CHD) is the leading cause of death in the United States. Recently, renin-angiotensin system (RAS) was found associated with atherosclerosis formation, with angiotensin II inducing vascular smooth muscle cell growth and migration, platelet activation and aggregation, and stimulation of plasminogen activator inhibitor-1. Angiotensin II is converted from angiotensin I by angiotensin I-converting enzyme (ACE) and this enzyme is mainly genetically determined. The ACE gene has been assigned to chromosome 17q23 and an insertion/deletion (I/D)polymorphism has been characterized by the presence/absence of a 287 bp fragment in intron 16 of the gene. The two alleles form three genotypes, namely, DD, ID and II and the DD genotype has been linked to higher plasma ACE levels and cell ACE activity.^ In this study, the association between the ACE I/D polymorphism and carotid artery wall thickness measured by B-mode ultrasound was investigated in a biracial sample, and the association between the gene and incident CHD was investigated in whites and if the gene-CHD association in whites, if any, was due to the gene effect on atherosclerosis. The study participants are from the prospective Atherosclerosis Risk in Communities (ARIC) Study, including adults aged 45 to 65 years. The present dissertation used a matched case-control design for studying the associations of the ACE gene with carotid artery atherosclerosis and an unmatched case-control design for the association of the gene with CHD. A significant recessive effect of the D allele on carotid artery thickness was found in blacks (OR = 3.06, 95% C.I: 1.11-8.47, DD vs. ID and II) adjusting for age, gender, cigarette smoking, LDL-cholesterol and diabetes. No similar associations were found in whites. The ACE I/D polymorphism is significantly associated with coronary heart disease in whites, and while stratifying data by carotid artery wall thickness, the significant associations were only observed in thin-walled subgroups. Assuming a recessive effect of the D allele, odds ratio was 2.84 (95% C.I:1.17-6.90, DD vs. ID and II) and it was 2.30 (95% C.I:1.22-4.35, DD vs. ID vs. II) assuming a codominant effect of the D allele. No significant associations were observed while comparing thick-walled CHD cases with thin-walled controls. Following conclusions could be drawn: (1) The ACE I/D polymorphism is unlikely to confer appreciable increase in the risk of carotid atherosclerosis in US whites, but may increases the risk of carotid atherosclerosis in blacks. (2) ACE I/D polymorphism is a genetic risk factor for incident CHD in US whites and this effect is separate from the chronic process of atherosclerosis development. Finally, the associations observed here are not causal, since the I/D polymorphism is in an intron, where no ACE proteins are encoded. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Placental formation and genomic imprinting are two important features of embryonic development in placental mammals. Genetic studies have demonstrated that imprinted genes play a prominent role in regulating placental formation. In marsupials, mice and humans, the paternally derived X chromosome is preferentially inactivated in the placental tissues of female embryos. This special form of genomic imprinting may have evolved under the same selective forces as autosomal imprinted genes. This chromosomal imprinting phenomenon predicts the existence of maternally expressed X-linked genes that regulate placental development.^ In this study, an X-linked homeobox gene, designated Esx1 has been isolated. During embryogenesis, Esx1 was expressed in a subset of placental tissues and regulates formation of the chorioallantoic placenta. Esx1 acted as an imprinted gene. Heterozygous female mice that inherit an Esx1-null allele from their father developed normally. However, heterozygous females that inherit the Esx1 mutation from their mother were born 20% smaller than normal and had an identical phenotype to hemizygous mutant males and homozygous mutant females. Surprisingly, although Esx1 mutant embryos were initially comparable in size to wild-type controls at 13.5 days post coitum (E13.5) their placentas were significantly larger (51% heavier than controls). Defects in the morphogenesis of the labyrinthine layer were observed as early as E11.5. Subsequently, vascularization abnormalities developed at the maternal-fetal interface, causing fetal growth retardation. These results identify Esx1 as the first essential X-chromosome-imprinted regulator of placental development that influences fetal growth and may have important implications in understanding human placental insufficiency syndromes such as intrauterine growth retardation (IUGR). ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high copy dTph1 transposon system of Petunia (Solanaceae) is one of the most powerful insertion mutagens in plants, but its activity cannot be controlled in the commonly used mutator strains. We analysed the regulation of dTph1 activity by QTL analysis in recombinant inbred lines of the mutator strain W138 and a wild species (P. integrifolia spp. inflata). Two genetic factors were identified that control dTph1 transposition. One corresponded to the ACT1 locus on chromosome I. A second, previously undescribed locus ACT2 mapped on chromosome V. As a 6-cM introgression in W138, the P. i. inflata act1(S6) allele behaved as a single recessive locus that fully eliminated transposition of all dTph1 elements in all stages of plant development and in a heritable fashion. Weak dTph1 activity was restored in act1(S6)/ACT2(S6) double introgression lines, indicating that the P. i. inflata allele at ACT2 conferred a low level of transposition. Thus, the act1(S6) allele is useful for simple and predictable control of transposition of the entire dTph1 family when introgressed into an ultra-high copy W138 mutator strain. We demonstrate the use of the ACT1(W138)/act1(S6) allele pair in a two-element dTph1 transposition system by producing 10 000 unique and fixed dTph1 insertions in a population of 1250 co-isogenic lines. This Petunia system produces the highest per plant insertion number of any known two-element system, providing a powerful and logistically simple tool for transposon mutagenesis of qualitative as well as quantitative traits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Cytomegalovirus (CMV) retinitis is a major cause of visual impairment and blindness among patients with uncontrolled HIV infections. Whereas polymorphisms in interferon-lambda 3 (IFNL3, previously named IL28B) strongly influence the clinical course of hepatitis C, few studies examined the role of such polymorphisms in infections due to viruses other than hepatitis C virus. OBJECTIVES To analyze the association of newly identified IFNL3/4 variant rs368234815 with susceptibility to CMV-associated retinitis in a cohort of HIV-infected patients. DESIGN AND METHODS This retrospective longitudinal study included 4884 white patients from the Swiss HIV Cohort Study, among whom 1134 were at risk to develop CMV retinitis (CD4 nadir <100 /μl and positive CMV serology). The association of CMV-associated retinitis with rs368234815 was assessed by cumulative incidence curves and multivariate Cox regression models, using the estimated date of HIV infection as a starting point, with censoring at death and/or lost follow-up. RESULTS A total of 40 individuals among 1134 patients at risk developed CMV retinitis. The minor allele of rs368234815 was associated with a higher risk of CMV retinitis (log-rank test P = 0.007, recessive mode of inheritance). The association was still significant in a multivariate Cox regression model (hazard ratio 2.31, 95% confidence interval 1.09-4.92, P = 0.03), after adjustment for CD4 nadir and slope, HAART and HIV-risk groups. CONCLUSION We reported for the first time an association between an IFNL3/4 polymorphism and susceptibility to AIDS-related CMV retinitis. IFNL3/4 may influence immunity against viruses other than HCV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND  Single nucleotide polymorphisms (SNPs) in immune genes have been associated with susceptibility to invasive mold infection (IMI) among hematopoietic stem cell (HSCT) but not solid organ transplant (SOT) recipients. METHODS  24 SNPs from systematically selected genes were genotyped among 1101 SOT recipients (715 kidneys, 190 liver, 102 lungs, 79 hearts, 15 other) from the Swiss Transplant Cohort Study. Association between SNPs and the endpoint were assessed by log-rank test and Cox regression models. Cytokine production upon Aspergillus stimulation was measured by ELISA in PBMCs from healthy volunteers and correlated with relevant genotypes. RESULTS  Mold colonization (N=45) and proven/probable IMI (N=26) were associated with polymorphisms in interleukin-1 beta (IL1B, rs16944; log-rank test, recessive mode, colonization P=0.001 and IMI P=0.00005), interleukin-1 receptor antagonist (IL1RN, rs419598; P=0.01 and P=0.02) and β-defensin-1 (DEFB1, rs1800972; P=0.001 and P=0.0002, respectively). The associations with IL1B and DEFB1 remained significant in a multivariate regression model (IL1B rs16944 P=0.002; DEFB1 rs1800972 P=0.01). Presence of two copies of the rare allele of rs16944 or rs419598 was associated with reduced Aspergillus-induced IL-1β and TNFα secretion by PBMCs. CONCLUSIONS  Functional polymorphisms in IL1B and DEFB1 influence susceptibility to mold infection in SOT recipients. This observation may contribute to individual risk stratification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent development of a goat SNP genotyping microarray enables genome-wide association studies in this important livestock species. We investigated the genetic basis of the black and brown coat colour in Valais Blacknecked and Coppernecked goats. A genome-wide association analysis using goat SNP50 BeadChip genotypes of 22 cases and 23 controls allowed us to map the locus for the brown coat colour to goat chromosome 8. The TYRP1 gene is located within the associated chromosomal region, and TYRP1 variants cause similar coat colour phenotypes in different species. We thus considered TYRP1 as a strong positional and functional candidate. We resequenced the caprine TYRP1 gene by Sanger and Illumina sequencing and identified two non-synonymous variants, p.Ile478Thr and p.Gly496Asp, that might have a functional impact on the TYRP1 protein. However, based on the obtained pedigree and genotype data, the brown coat colour in these goats is not due to a single recessive loss-of-function allele. Surprisingly, the genotype distribution and the pedigree data suggest that the (496) Asp allele might possibly act in a dominant manner. The (496) Asp allele was present in 77 of 81 investigated Coppernecked goats and did not occur in black goats. This strongly suggests heterogeneity underlying the brown coat colour in Coppernecked goats. Functional experiments or targeted matings will be required to verify the unexpected preliminary findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA-based parentage determination accelerates genetic improvement in sheep by increasing pedigree accuracy. Single nucleotide polymorphism (SNP) markers can be used for determining parentage and to provide unique molecular identifiers for tracing sheep products to their source. However, the utility of a particular "parentage SNP" varies by breed depending on its minor allele frequency (MAF) and its sequence context. Our aims were to identify parentage SNPs with exceptional qualities for use in globally diverse breeds and to develop a subset for use in North American sheep. Starting with genotypes from 2,915 sheep and 74 breed groups provided by the International Sheep Genomics Consortium (ISGC), we analyzed 47,693 autosomal SNPs by multiple criteria and selected 163 with desirable properties for parentage testing. On average, each of the 163 SNPs was highly informative (MAF≥0.3) in 48±5 breed groups. Nearby polymorphisms that could otherwise confound genetic testing were identified by whole genome and Sanger sequencing of 166 sheep from 54 breed groups. A genetic test with 109 of the 163 parentage SNPs was developed for matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The scoring rates and accuracies for these 109 SNPs were greater than 99% in a panel of North American sheep. In a blinded set of 96 families (sire, dam, and non-identical twin lambs), each parent of every lamb was identified without using the other parent's genotype. In 74 ISGC breed groups, the median estimates for probability of a coincidental match between two animals (PI), and the fraction of potential adults excluded from parentage (PE) were 1.1×10(-39) and 0.999987, respectively, for the 109 SNPs combined. The availability of a well-characterized set of 163 parentage SNPs facilitates the development of high-throughput genetic technologies for implementing accurate and economical parentage testing and traceability in many of the world's sheep breeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations of STAT3 underlie the autosomal dominant form of hyperimmunoglobulin E syndrome (HIES). STAT3 has critical roles in immune cells and thus, hematopoietic stem cell transplantation (HSCT), might be a reasonable therapeutic strategy in this disease. However, STAT3 also has critical functions in nonhematopoietic cells and dissecting the protean roles of STAT3 is limited by the lethality associated with germline deletion of Stat3. Thus, predicting the efficacy of HSCT for HIES is difficult. To begin to dissect the importance of STAT3 in hematopoietic and nonhematopoietic cells as it relates to HIES, we generated a mouse model of this disease. We found that these transgenic mice recapitulate multiple aspects of HIES, including elevated serum IgE and failure to generate Th17 cells. We found that these mice were susceptible to bacterial infection that was partially corrected by HSCT using wild-type bone marrow, emphasizing the role played by the epithelium in the pathophysiology of HIES.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Heritable forms of epidermolysis bullosa (EB) constitute a heterogeneous group of skin disorders of genetic aetiology that are characterised by skin and mucous membrane blistering and ulceration in response to even minor trauma. Here we report the occurrence of EB in three Danish Hereford cattle from one herd. RESULTS Two of the animals were necropsied and showed oral mucosal blistering, skin ulcerations and partly loss of horn on the claws. Lesions were histologically characterized by subepidermal blisters and ulcers. Analysis of the family tree indicated that inbreeding and the transmission of a single recessive mutation from a common ancestor could be causative. We performed whole genome sequencing of one affected calf and searched all coding DNA variants. Thereby, we detected a homozygous 2.4 kb deletion encompassing the first exon of the LAMC2 gene, encoding for laminin gamma 2 protein. This loss of function mutation completely removes the start codon of this gene and is therefore predicted to be completely disruptive. The deletion co-segregates with the EB phenotype in the family and absent in normal cattle of various breeds. Verifying the homozygous private variants present in candidate genes allowed us to quickly identify the causative mutation and contribute to the final diagnosis of junctional EB in Hereford cattle. CONCLUSIONS Our investigation confirms the known role of laminin gamma 2 in EB aetiology and shows the importance of whole genome sequencing in the analysis of rare diseases in livestock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Rare diseases in livestock animals are traditionally poorly diagnosed. Other than clinical description and pathological examination, the underlying causes have, for the most part, remained unknown. A single case of congenital skin fragility in cattle was observed, necropsy, histological and ultrastructural examinations were carried out and whole genome sequencing was utilized to identify the causative mutation. RESULTS A single purebred female Charolais calf with severe skin lesions was delivered full-term and died spontaneously after birth. The clinical and pathological findings exactly matched the gross description given by previous reports on epitheliogenesis imperfecta and epidermolysis bullosa (EB) in cattle. Histological and ultrastructural changes were consistent with EB junctionalis (EBJ). Genetic analysis revealed a previously unpublished ITGB4 loss-of-function mutation; the affected calf was homozygous for a 4.4 kb deletion involving exons 17 to 22, and the dam carried a single copy of the deletion indicating recessive inheritance. The homozygous mutant genotype did not occur in healthy controls of various breeds but some heterozygous carriers were found among Charolais cattle belonging to the affected herd. The mutant allele was absent in a representative sample of unrelated sires of the German Charolais population. CONCLUSION This is the first time in which a recessively inherited ITGB4 associated EBJ has been reported in cattle. The identification of heterozygous carriers is of importance in avoiding the transmission of this defect in future. Current DNA sequencing methods offer a powerful tool for understanding the genetic background of rare diseases in domestic animals having a reference genome sequence available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND L-serine plays an essential role in neuronal development and function. Although a non-essential amino acid, L-serine must be synthesised within the brain because of its poor permeability by the blood-brain barrier. Within the brain, its synthesis is confined to astrocytes, and its shuttle to neuronal cells is performed by a dedicated neutral amino acid transporter, ASCT1. METHODS AND RESULTS Using exome analysis we identified the recessive mutations, p.E256K, p.L315fs, and p.R457W, in SLC1A4, the gene encoding ASCT1, in patients with developmental delay, microcephaly and hypomyelination; seizure disorder was variably present. When expressed in a heterologous system, the mutations did not affect the protein level at the plasma membrane but abolished or markedly reduced L-serine transport for p.R457W and p.E256K mutations, respectively. Interestingly, p.E256K mutation displayed a lower L-serine and alanine affinity but the same substrate selectivity as wild-type ASCT1. CONCLUSIONS The clinical phenotype of ASCT1 deficiency is reminiscent of defects in L-serine biosynthesis. The data underscore that ASCT1 is essential in brain serine transport. The SLC1A4 p.E256K mutation has a carrier frequency of 0.7% in the Ashkenazi-Jewish population and should be added to the carrier screening panel in this community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies from a wide diversity of taxa have shown a negative relationship between genetic compatibility and the divergence time of hybridizing genomes. Theory predicts the main breakdown of fitness to happen after the F1 hybrid generation, when heterosis subsides and recessive allelic (Dobzhansky-Muller) incompatibilities are increasingly unmasked. We measured the fitness of F2 hybrids of African haplochromine cichlid fish bred from species pairs spanning several thousand to several million years divergence time. F2 hybrids consistently showed the lowest viability compared to F1 hybrids and non-hybrid crosses (crosses within the grandparental species), in agreement with hybrid breakdown. Especially the short- and long-term survival (2 weeks to 6 months) of F2 hybrids was significantly reduced. Overall, F2 hybrids showed a fitness reduction of 21% compared to F1 hybrids, and a reduction of 43% compared to the grandparental, non-hybrid crosses. We further observed a decrease of F2 hybrid viability with the genetic distance between grandparental lineages, suggesting an important role for negative epistatic interactions in cichlid fish postzygotic isolation. The estimated time window for successful production of F2 hybrids resulting from our data is consistent with the estimated divergence time between the multiple ancestral lineages that presumably hybridized in three major adaptive radiations of African cichlids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteogenesis imperfecta (OI) is a heritable connective tissue disease characterized by bone fragility and increased risk of fractures. Up to now, mutations in at least 18 genes have been associated with dominant and recessive forms of OI that affect the production or post-translational processing of procollagen or alter bone homeostasis. Among those, SERPINH1 encoding heat shock protein 47 (HSP47), a chaperone exclusive for collagen folding in the ER, was identified to cause a severe form of OI in dachshunds (L326P) as well as in humans (one single case with a L78P mutation). To elucidate the disease mechanism underlying OI in the dog model, we applied a range of biochemical assays to mutant and control skin fibroblasts as well as on bone samples. These experiments revealed that type I collagen synthesized by mutant cells had decreased electrophoretic mobility. Procollagen was retained intracellularly with concomitant dilation of ER cisternae and activation of the ER stress response markers GRP78 and phospho-eIF2α, thus suggesting a defect in procollagen processing. In line with the migration shift detected on SDS-PAGE of cell culture collagen, extracts of bone collagen from the OI dog showed a similar mobility shift, and on tandem mass spectrometry, the chains were post-translationally overmodified. The bone collagen had a higher content of pyridinoline than control dog bone. We conclude that the SERPINH1 mutation in this naturally occurring model of OI impairs how HSP47 acts as a chaperone in the ER. This results in abnormal post-translational modification and cross-linking of the bone collagen.