943 resultados para automated full waveform logging system
Resumo:
The text analyzes the impact of the economic crisis in some critical aspects of the National Health System: outcomes, health expenditure, remuneration policy and privatization through Private Public Partnership models. Some health outcomes related to social inequalities are worrying. Reducing public health spending has increased the fragility of the health system, reduced wage income of workers in the sector and increased heterogeneity between regions. Finally, the evidence indicates that privatization does not mean more efficiency and better governance. Deep reforms are needed to strengthen the National Health System.
Resumo:
The popularity of Computing degrees in the UK has been increasing significantly over the past number of years. In Northern Ireland, from 2007 to 2015, there has been a 40% increase in acceptances to Computer Science degrees with England seeing a 60% increase over the same period (UCAS, 2016). However, this is tainted as Computer Science degrees also continue to maintain the highest dropout rates.
In Queen’s University Belfast we currently have a Level 1 intake of over 400 students across a number of computing pathways. Our drive as staff is to empower and motivate the students to fully engage with the course content. All students take a Java programming module the aim of which is to provide an understanding of the basic principles of object-oriented design. In order to assess these skills, we have developed Jigsaw Java as an innovative assessment tool offering intelligent, semi-supervised automated marking of code.
Jigsaw Java allows students to answer programming questions using a drag-and-drop interface to place code fragments into position. Their answer is compared to the sample solution and if it matches, marks are allocated accordingly. However, if a match is not found then the corresponding code is executed using sample data to determine if its logic is acceptable. If it is, the solution is flagged to be checked by staff and if satisfactory is saved as an alternative solution. This means that appropriate marks can be allocated and should another student have submitted the same placement of code fragments this does not need to be executed or checked again. Rather the system now knows how to assess it.
Jigsaw Java is also able to consider partial marks dependent on code placement and will “learn” over time. Given the number of students, Jigsaw Java will improve the consistency and timeliness of marking.
Resumo:
In this paper, we propose three relay selection schemes for full-duplex heterogeneous networks in the presence of multiple cognitive radio eavesdroppers. In this setup, the cognitive small-cell nodes (secondary network) can share the spectrum licensed to the macro-cell system (primary network) on the condition that the quality-of-service of the primary network is always satisfied subjected to its outage probability constraint. The messages are delivered from one small-cell base station to the destination with the help of full-duplex small-cell base stations, which act as relay nodes. Based on the availability of the network’s channel state information at the secondary information source, three different selection criteria for full-duplex relays, namely: 1) partial relay selection; 2) optimal relay selection; and 3) minimal self-interference relay selection, are proposed. We derive the exact closed-form and asymptotic expressions of the secrecy outage probability for the three criteria under the attack of non-colluding/colluding eavesdroppers. We demonstrate that the optimal relay selection scheme outperforms the partial relay selection and minimal self-interference relay selection schemes at the expense of acquiring full channel state information knowledge. In addition, increasing the number of the full-duplex small-cell base stations can improve the security performance. At the illegitimate side, deploying colluding eavesdroppers and increasing the number of eavesdroppers put the confidential information at a greater risk. Besides, the transmit power and the desire outage probability of the primary network have great influences on the secrecy outage probability of the secondary network.
Resumo:
The annotation of Business Dynamics models with parameters and equations, to simulate the system under study and further evaluate its simulation output, typically involves a lot of manual work. In this paper we present an approach for automated equation formulation of a given Causal Loop Diagram (CLD) and a set of associated time series with the help of neural network evolution (NEvo). NEvo enables the automated retrieval of surrogate equations for each quantity in the given CLD, hence it produces a fully annotated CLD that can be used for later simulations to predict future KPI development. In the end of the paper, we provide a detailed evaluation of NEvo on a business use-case to demonstrate its single step prediction capabilities.
Resumo:
We consider a multipair relay channel, where multiple sources communicate with multiple destinations with the help of a full-duplex (FD) relay station (RS). All sources and destinations have a single antenna, while the RS is equipped with massive arrays. We assume that the RS estimates the channels by using training sequences transmitted from sources and destinations. Then, it uses maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To significantly reduce the loop interference (LI) effect, we propose two massive MIMO processing techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the RS. We derive an exact achievable rate in closed-form and evaluate the system spectral efficiency. We show that, by doubling the number of antennas at the RS, the transmit power of each source and of the RS can be reduced by 1.5 dB if the pilot power is equal to the signal power and by 3 dB if the pilot power is kept fixed, while maintaining a given quality-of-service. Furthermore, we compare FD and half-duplex (HD) modes and show that FD improves significantly the performance when the LI level is low.
Resumo:
There have been over 3000 bridge weigh-in-motion (B-WIM) installations in 25 countries worldwide, this has led vast improvements in post processing of B-WIM systems since its introduction in the 1970’s. This paper introduces a new low-power B-WIM system using fibre optic sensors (FOS). The system consisted of a series of FOS which were attached to the soffit of an existing integral bridge with a single span of 19m. The site selection criteria and full installation process has been detailed in the paper. A method of calibration was adopted using live traffic at the bridge site and based on this calibration the accuracy of the system was determined.
Resumo:
Automated acceptance testing is the testing of software done in higher level to test whether the system abides by the requirements desired by the business clients by the use of piece of script other than the software itself. This project is a study of the feasibility of acceptance tests written in Behavior Driven Development principle. The project includes an implementation part where automated accep- tance testing is written for Touch-point web application developed by Dewire (a software consultant company) for Telia (a telecom company) from the require- ments received from the customer (Telia). The automated acceptance testing is in Cucumber-Selenium framework which enforces Behavior Driven Development principles. The purpose of the implementation is to verify the practicability of this style of acceptance testing. From the completion of implementation, it was concluded that all the requirements from customer in real world can be converted into executable specifications and the process was not at all time-consuming or difficult for a low-experienced programmer like the author itself. The project also includes survey to measure the learnability and understandability of Gherkin- the language that Cucumber understands. The survey consist of some Gherkin exam- ples followed with questions that include making changes to the Gherkin exam- ples. Survey had 3 parts: first being easy, second medium and third most difficult. Survey also had a linear scale from 1 to 5 to rate the difficulty level for each part of the survey. 1 stood for very easy and 5 for very difficult. Time when the partic- ipants began the survey was also taken in order to calculate the total time taken by the participants to learn and answer the questions. Survey was taken by 18 of the employers of Dewire who had primary working role as one of the programmer, tester and project manager. In the result, tester and project manager were grouped as non-programmer. The survey concluded that it is very easy and quick to learn Gherkin. While the participants rated Gherkin as very easy.
Resumo:
This is the first time a multidisciplinary team has employed an iterative co-design method to determine the ergonomic layout of an emergency ambulance treatment space. This process allowed the research team to understand how treatment protocols were performed and developed analytical tools to reach an optimum configuration towards ambulance design standardisation. Fusari conducted participatory observations during 12-hour shifts with front-line ambulance clinicians, hospital staff and patients to understand the details of their working environments whilst on response to urgent and emergency calls. A simple yet accurate 1:1 mock-up of the existing ambulance was built for detailed analysis of these procedures through simulations. Paramedics were called in to participate in interviews and role-playing inside the model to recreate tasks, how they are performed, the equipment used and to understand the limitations of the current ambulance. The use of Link Analysis distilled 5 modes of use. In parallel, an exhaustive audit of all equipment and consumables used in ambulances was performed (logging and photography) to define space use. These developed 12 layout options for refinement and CAD modelling and presented back to paramedics. The preferred options and features were then developed into a full size test rig and appearance model. Two key studies informed the process. The 2005 National Patient Safety Agency funded study “Future Ambulances” outlined 9 design challenges for future standardisation of emergency vehicles and equipment. Secondly, the 2007 EPSRC funded “Smart Pods” project investigated a new system of mobile urgent and emergency medicine to treat patients in the community. A full-size mobile demonstrator unit featuring the evidence-based ergonomic layout was built for clinical tests through simulated emergency scenarios. Results from clinical trials clearly show that the new layout improves infection control, speeds up treatment, and makes it easier for ambulance crews to follow correct clinical protocols.
Resumo:
Conventional wisdom in many agricultural systems across the world is that farmers cannot, will not, or should not pay the full costs associated with surface water delivery. Across Organisation for Economic Co-operation and Development (OECD) countries, only a handful can claim complete recovery of operation, maintenance, and capital costs; across Central and South Asia, fees are lower still, with farmers in Nepal, India, and Kazakhstan paying fractions of a U.S. penny for a cubic meter of water. In Pakistan, fees amount to roughly USD 1-2 per acre per season. However, farmers in Pakistan spend orders of magnitude more for diesel fuel to pump groundwater each season, suggesting a latent willingness to spend for water that, under the right conditions, could potentially be directed toward water-use fees for surface water supply. Although overall performance could be expected to improve with greater cost recovery, asymmetric access to water in canal irrigation systems leaves the question open as to whether those benefits would be equitably shared among all farmers in the system. We develop an agent-based model (ABM) of a small irrigation command to examine efficiency and equity outcomes across a range of different cost structures for the maintenance of the system, levels of market development, and assessed water charges. We find that, robust to a range of different cost and structural conditions, increased water charges lead to gains in both efficiency and concomitant improvements in equity as investments in canal infrastructure and system maintenance improve the conveyance of water resources further down watercourses. This suggests that, under conditions in which (1) farmers are currently spending money to pump groundwater to compensate for a failing surface water system, and (2) there is the possibility that through initial investment to provide perceptibly better water supply, genuine win-win solutions can be attained through higher water-use fees to beneficiary farmers.
Resumo:
The automated transfer of flight logbook information from aircrafts into aircraft maintenance systems leads to reduced ground and maintenance time and is thus desirable from an economical point of view. Until recently, flight logbooks have not been managed electronically in aircrafts or at least the data transfer from aircraft to ground maintenance system has been executed manually. Latest aircraft types such as the Airbus A380 or the Boeing 787 do support an electronic logbook and thus make an automated transfer possible. A generic flight logbook transfer system must deal with different data formats on the input side – due to different aircraft makes and models – as well as different, distributed aircraft maintenance systems for different airlines as aircraft operators. This article contributes the concept and top level distributed system architecture of such a generic system for automated flight log data transfer. It has been developed within a joint industry and applied research project. The architecture has already been successfully evaluated in a prototypical implementation.
Resumo:
One of the main features of the Greek currency are the big differences between emissions of the polis, which did not match either in their iconographic message types, not even in the met-rical pattern of their values. These differences were reflected in exchange systems ruled by the main sanctuaries that shrines stipu-lated thus giving official status to change.
Resumo:
Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.
Resumo:
Image processing offers unparalleled potential for traffic monitoring and control. For many years engineers have attempted to perfect the art of automatic data abstraction from sequences of video images. This paper outlines a research project undertaken at Napier University by the authors in the field of image processing for automatic traffic analysis. A software based system implementing TRIP algorithms to count cars and measure vehicle speed has been developed by members of the Transport Engineering Research Unit (TERU) at the University. The TRIP algorithm has been ported and evaluated on an IBM PC platform with a view to hardware implementation of the pre-processing routines required for vehicle detection. Results show that a software based traffic counting system is realisable for single window processing. Due to the high volume of data required to be processed for full frames or multiple lanes, system operations in real time are limited. Therefore specific hardware is required to be designed. The paper outlines a hardware design for implementation of inter-frame and background differencing, background updating and shadow removal techniques. Preliminary results showing the processing time and counting accuracy for the routines implemented in software are presented and a real time hardware pre-processing architecture is described.
Resumo:
At present, in large precast concrete enterprises, the management over precast concrete component has been chaotic. Most enterprises take labor-intensive manual input method, which is time consuming and laborious, and error-prone. Some other slightly better enterprises choose to manage through bar-code or printing serial number manually. However, on one hand, this is also labor-intensive, on the other hand, this method is limited by external environment, making the serial number blur or even lost, and also causes a big problem on production traceability and quality accountability. Therefore, to realize the enterprise’s own rapid development and cater to the needs of the time, to achieve the automated production management has been a big problem for a modern enterprise. In order to solve the problem, inefficiency in production and traceability of the products, this thesis try to introduce RFID technology into the production of PHC tubular pile. By designing a production management system of precast concrete components, the enterprise will achieve the control of the entire production process, and realize the informatization of enterprise production management. RFID technology has been widely used in many fields like entrance control, charge management, logistics and so on. RFID technology will adopt passive RFID tag, which is waterproof, shockproof, anti-interference, so it’s suitable for the actual working environment. The tag will be bound to the precast component steel cage (the structure of the PHC tubular pile before the concrete placement), which means each PHC tubular pile will have a unique ID number. Then according to the production procedure, the precast component will be performed with a series of actions, put the steel cage into the mold, mold clamping, pouring concrete (feed), stretching, centrifugalizing, maintenance, mold removing, welding splice. In every session of the procedure, the information of the precast components can be read through a RFID reader. Using a portable smart device connected to the database, the user can check, inquire and management the production information conveniently. Also, the system can trace the production parameter and the person in charge, realize the traceability of the information. This system can overcome the disadvantages in precast components manufacturers, like inefficiency, error-prone, time consuming, labor intensity, low information relevance and so on. This system can help to improve the production management efficiency, and can produce a good economic and social benefits, so, this system has a certain practical value.
Resumo:
The role of T-cells within the immune system is to confirm and assess anomalous situations and then either respond to or tolerate the source of the effect. To illustrate how these mechanisms can be harnessed to solve real-world problems, we present the blueprint of a T-cell inspired algorithm for computer security worm detection. We show how the three central T-cell processes, namely T-cell maturation, differentiation and proliferation, naturally map into this domain and further illustrate how such an algorithm fits into a complete immune inspired computer security system and framework.