890 resultados para arc routing
Resumo:
In questa tesi si è voluto interfacciare dispositivi di nuova generazione (Raspberry Pi), presenti in una topologia di rete già implementata, con dispositivi di vecchia generazione, come Router Cisco e Switch HP. Questi ultimi sono dispositivi fisici, mentre i Raspberry, tramite tool mininet e altre impostazioni, possono generare dispositivi virtuali. Si è quindi applicato un interfacciamento tra le due tipologie di apparati, creando una rete nuova, e adatta come caso a ricoprire le reti attuali, siccome questo è un esempio di come con poche modifiche si può intervenire su qualsiasi rete già operativa. Si sono quindi osservati i criteri generali su cui operano sia i router, che gli switch, e si sono osservati come questi interagiscono con un flusso di dati attraverso vari protocolli, alcuni rifacenti al modello ISO/OSI, altri all'OSPF.
Resumo:
L'ambiente di questa tesi è quello del Delay and Disruption Tolerant Networks (DTN), un'architettura di rete di telecomunicazioni avente come obiettivo le comunicazioni tra nodi di reti dette “challenged”, le quali devono affrontare problemi come tempi di propagazione elevati, alto tasso di errore e periodi di perdita delle connessioni. Il Bunde layer, un nuovo livello inserito tra trasporto e applicazione nell’architettura ISO/OSI, ed il protocollo ad esso associato, il Bundle Protocol (BP), sono stati progettati per rendere possibili le comunicazioni in queste reti. A volte fra la ricezione e l’invio può trascorrere un lungo periodo di tempo, a causa della indisponibilità del collegamento successivo; in questo periodo il bundle resta memorizzato in un database locale. Esistono varie implementazioni dell'architettura DTN come DTN2, implementazione di riferimento, e ION (Interplanetary Overlay Network), sviluppata da NASA JPL, per utilizzo in applicazioni spaziali; in esse i contatti tra i nodi sono deterministici, a differenza delle reti terrestri nelle quali i contatti sono generalmente opportunistici (non noti a priori). Per questo motivo all’interno di ION è presente un algoritmo di routing, detto CGR (Contact Graph Routing), progettato per operare in ambienti con connettività deterministica. È in fase di ricerca un algoritmo che opera in ambienti non deterministici, OCGR (Opportunistic Contact Graph Routing), che estende CGR. L’obiettivo di questa tesi è quello di fornire una descrizione dettagliata del funzionamento di OCGR, partendo necessariamente da CGR sul quale è basato, eseguire dei test preliminari, richiesti da NASA JPL, ed analizzarne i risultati per verificare la possibilità di utilizzo e miglioramento dell’algoritmo. Sarà inoltre descritto l’ambiente DTN e i principali algoritmi di routing per ambienti opportunistici. Nella parte conclusiva sarà presentato il simulatore DTN “The ONE” e l’integrazione di CGR e OCGR al suo interno.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
New radiogenic isotope and trace element data are presented for the volcanic sequences along 600 km of the active Izu-Bonin arc, the Oligocene Izu arc, and their associated rift basins. As with many intra-oceanic island arcs, the Pliocene-Recent Izu-Bonin frontal-arc lavas are highly depleted in Zr, Nb and the rare-earth elements relative to typical mid-ocean ridge basalt (MORB), indicating that the mantle wedge source has undergone a previous episode of melting. Ratios between these elements (such as Nb/Zr and La/Sm), as well as 143Nd/144Nd, do not vary significantly along the length of the frontal-arc. These parameters suggest that each of the arc volcanoes is derived from similar melt fractions of the mantle wedge. However, Ba/Zr, Ba/Rb and 87Sr/86Sr increase along the frontal-arc to the north. This leads us to propose that a variable enrichment in Ba and radiogenic Sr is superimposed on the mantle wedge. Sr-Nd and Pb-Nd isotope variation indicate that both Sr and Pb become more radiogenic after fluid addition. However, Pb isotope ratios do not correlate with increases in Pb concentration or ratios such as Ba/Zr and Nb/Pb. In other words, the Pb isotopic composition of the arc lavas appears to be independent of the amount of Pb introduced by subduction fluids into the mantle source. This buffering of Pb isotopes along the frontal-arc means that the isotopic composition of the lavas is indistinguishable from that of the fluid. Isotopic mixing models presented for the arc are only illustrative of the many plausible combinations of components and quantities. Despite this, we are able to determine that the mantle wedge has isotopic characteristics similar to Indian Ocean MORB, and that the subduction-fluid solute is primarily derived from subducted oceanic basalt with a <2% contribution from subducted sediment. Lavas in the Oligocene Izu arc and fore-arc basin were derived from a mantle wedge of similar composition to the active arc. Despite levels of Pb enrichment comparable to those of the modern arc, the Pb isotopes of the Oligocene volcanics indicate a lower sediment input into the melting region.
Resumo:
Thick pumice deposits were found in the cored sequences of forearc, arc, and backarc sites of Leg 126 in the Izu-Bonin Arc. These deposits, composed of fragmental rhyolite pumice with the chemical composition of low-alkali tholeiites, are products of arc volcanism. Pumice deposits constitute more than half of the thickness of the sediment fill of the Sumisu Rift, a backarc rift of the Izu-Bonin Arc. They comprise five thick pumiceous beds separated by thin hemipelagic units; as such, they record four major episodes or pulses of explosive, rhyolitic volcanism during the last 0.15 Ma, separated by quiescent intervals that each lasted about 30-60 k.y. The thick pumiceous beds were deposited in the rift mainly by sediment gravity flows during and immediately after the eruption of arc volcanos, which were probably submarine. Initiation of rifting was also preceded in the Pliocene by submarine rhyolitic volcanism, as seen in samples from the top of the eastern rift flank. Thick pumice beds correlative with those in the backarc also occur in the forearc basin to the east.
Resumo:
We consider the problem of resource selection in clustered Peer-to-Peer Information Retrieval (P2P IR) networks with cooperative peers. The clustered P2P IR framework presents a significant departure from general P2P IR architectures by employing clustering to ensure content coherence between resources at the resource selection layer, without disturbing document allocation. We propose that such a property could be leveraged in resource selection by adapting well-studied and popular inverted lists for centralized document retrieval. Accordingly, we propose the Inverted PeerCluster Index (IPI), an approach that adapts the inverted lists, in a straightforward manner, for resource selection in clustered P2P IR. IPI also encompasses a strikingly simple peer-specific scoring mechanism that exploits the said index for resource selection. Through an extensive empirical analysis on P2P IR testbeds, we establish that IPI competes well with the sophisticated state-of-the-art methods in virtually every parameter of interest for the resource selection task, in the context of clustered P2P IR.
Resumo:
The Biarjmand granitoids and granitic gneisses in northeast Iran are part of the Torud–Biarjmand metamorphic complex, where previous zircon U–Pb geochronology show ages of ca. 554–530 Ma for orthogneissic rocks. Our new U–Pb zircon ages confirm a Cadomian age and show that the granitic gneiss is ~30 million years older (561.3 ± 4.7 Ma) than intruding granitoids(522.3 ± 4.2 Ma; 537.7 ± 4.7 Ma). Cadomian magmatism in Iran was part of an approximately 100-million-year-long episode of subduction-related arc and back-arc magmatism, which dominated the whole northern Gondwana margin, from Iberia to Turkey and Iran. Major REE and trace element data show that these granitoids have calc-alkaline signatures. Their zircon O (δ18O = 6.2–8.9‰) and Hf (–7.9 to +5.5; one point with εHf ~ –17.4) as well as bulk rock Nd isotopes (εNd(t)= –3 to –6.2) show that these magmas were generated via mixing of juvenile magmas with an older crust and/or melting of middle continental crust. Whole-rock Nd and zircon Hf model ages (1.3–1.6 Ga) suggest that this older continental crust was likely to have been Mesoproterozoic or even older. Our results, including variable zircon εHf(t) values, inheritance of old zircons and lack of evidence for juvenile Cadomian igneous rocks anywhere in Iran, suggest that the geotectonic setting during late Ediacaran and early Cambrian time was a continental magmatic arc rather than back-arc for the evolution of northeast Iran Cadomian igneous rocks.
Resumo:
Recent paradigms in wireless communication architectures describe environments where nodes present a highly dynamic behavior (e.g., User Centric Networks). In such environments, routing is still performed based on the regular packet-switched behavior of store-and-forward. Albeit sufficient to compute at least an adequate path between a source and a destination, such routing behavior cannot adequately sustain the highly nomadic lifestyle that Internet users are today experiencing. This thesis aims to analyse the impact of the nodes’ mobility on routing scenarios. It also aims at the development of forwarding concepts that help in message forwarding across graphs where nodes exhibit human mobility patterns, as is the case of most of the user-centric wireless networks today. The first part of the work involved the analysis of the mobility impact on routing, and we found that node mobility significance can affect routing performance, and it depends on the link length, distance, and mobility patterns of nodes. The study of current mobility parameters showed that they capture mobility partially. The routing protocol robustness to node mobility depends on the routing metric sensitivity to node mobility. As such, mobility-aware routing metrics were devised to increase routing robustness to node mobility. Two categories of routing metrics proposed are the time-based and spatial correlation-based. For the validation of the metrics, several mobility models were used, which include the ones that mimic human mobility patterns. The metrics were implemented using the Network Simulator tool using two widely used multi-hop routing protocols of Optimized Link State Routing (OLSR) and Ad hoc On Demand Distance Vector (AODV). Using the proposed metrics, we reduced the path re-computation frequency compared to the benchmark metric. This means that more stable nodes were used to route data. The time-based routing metrics generally performed well across the different node mobility scenarios used. We also noted a variation on the performance of the metrics, including the benchmark metric, under different mobility models, due to the differences in the node mobility governing rules of the models.
Resumo:
The Internet has grown in size at rapid rates since BGP records began, and continues to do so. This has raised concerns about the scalability of the current BGP routing system, as the routing state at each router in a shortest-path routing protocol will grow at a supra-linearly rate as the network grows. The concerns are that the memory capacity of routers will not be able to keep up with demands, and that the growth of the Internet will become ever more cramped as more and more of the world seeks the benefits of being connected. Compact routing schemes, where the routing state grows only sub-linearly relative to the growth of the network, could solve this problem and ensure that router memory would not be a bottleneck to Internet growth. These schemes trade away shortest-path routing for scalable memory state, by allowing some paths to have a certain amount of bounded “stretch”. The most promising such scheme is Cowen Routing, which can provide scalable, compact routing state for Internet routing, while still providing shortest-path routing to nearly all other nodes, with only slightly stretched paths to a very small subset of the network. Currently, there is no fully distributed form of Cowen Routing that would be practical for the Internet. This dissertation describes a fully distributed and compact protocol for Cowen routing, using the k-core graph decomposition. Previous compact routing work showed the k-core graph decomposition is useful for Cowen Routing on the Internet, but no distributed form existed. This dissertation gives a distributed k-core algorithm optimised to be efficient on dynamic graphs, along with with proofs of its correctness. The performance and efficiency of this distributed k-core algorithm is evaluated on large, Internet AS graphs, with excellent results. This dissertation then goes on to describe a fully distributed and compact Cowen Routing protocol. This protocol being comprised of a landmark selection process for Cowen Routing using the k-core algorithm, with mechanisms to ensure compact state at all times, including at bootstrap; a local cluster routing process, with mechanisms for policy application and control of cluster sizes, ensuring again that state can remain compact at all times; and a landmark routing process is described with a prioritisation mechanism for announcements that ensures compact state at all times.
Resumo:
Part 18: Optimization in Collaborative Networks