961 resultados para approximate calculation of sums
Resumo:
OBJECTIVE: Postmortem examination of chest trauma is an important domain in forensic medicine, which is today performed using autopsy. Since the implementation of cross-sectional imaging methods in forensic medicine such as computed tomography (CT) and magnetic resonance imaging (MRI), a number of advantages in comparison with autopsy have been described. Within the scope of validation of cross-sectional radiology in forensic medicine, the comparison of findings of postmortem imaging and autopsy in chest trauma was performed. METHODS: This retrospective study includes 24 cases with chest trauma that underwent postmortem CT, MRI, and autopsy. Two board-certified radiologists, blind to the autopsy findings, evaluated the radiologic data independently. Each radiologist interpreted postmortem CT and MRI data together for every case. The comparison of the results of the radiologic assessment with the autopsy and a calculation of interobserver discrepancy was performed. RESULTS: Using combined CT and MRI, between 75% and 100% of the investigated findings, except for hemomediastinum (70%), diaphragmatic ruptures (50%; n=2) and heart injury (38%), were discovered. Although the sensitivity and specificity regarding pneumomediastinum, pneumopericardium, and pericardial effusion were not calculated, as these findings were not mentioned at the autopsy, these findings were clearly seen radiologically. The averaged interobserver concordance was 90%. CONCLUSION: The sensitivity and specificity of our results demonstrate that postmortem CT and MRI are useful diagnostic methods for assessing chest trauma in forensic medicine as a supplement to autopsy. Further radiologic-pathologic case studies are necessary to define the role of postmortem CT and MRI as a single examination modality.
Resumo:
OBJECTIVE: Flow mismatch between the supplying artery and the myocardial perfusion region has been observed in patients with internal thoracic artery grafts. Thus coronary flow changes of arterial (internal thoracic artery grafts) and saphenous (saphenous vein grafts) bypass grafts were studied early and late after coronary artery bypass grafting. METHODS: Thirty patients undergoing elective bypass surgery (internal thoracic artery and saphenous vein grafts) were studied intraoperatively and (17 patients) 3 to 10 months postoperatively. Coronary flow was measured intraoperatively with the transit-time Doppler scanning technique. Postoperatively, flow velocity and coronary flow reserve were determined with the Doppler flow wire technique. Quantitative angiographic analysis was used to determine vessel size for calculation of absolute flow. RESULTS: Intraoperatively, internal thoracic artery graft flow was significantly lower than saphenous vein graft flow (31 +/- 8 vs 58 +/- 29 mL/min, P < .01). Postoperatively, internal thoracic artery graft flow increased significantly to 42 +/- 24 mL/min at 3 months and to 56 +/- 30 mL/min (P < .02 vs intraoperative value) at 10 months, respectively. However, saphenous vein graft flow remained unchanged over time (58 +/- 29 to 50 +/- 27 mL/min at 3 months and 46 +/- 27 mL/min at 10 months). Coronary flow reserve was abnormally low intraoperatively in the internal thoracic artery (1.3 +/- 0.3) and saphenous vein (1.6 +/- 0.5) grafts but increased significantly to normal values in both types of graft at follow-up. CONCLUSIONS: Bypass flow of the internal thoracic artery graft is significantly reduced intraoperatively when compared with that of the saphenous vein graft. However, 3 and 10 months after the operation, flow of the internal thoracic artery graft increases significantly and is similar to saphenous vein graft flow. This finding can be explained by an early flow mismatch of the native internal thoracic artery in the presence of a large perfusion territory. During follow-up, there is vascular remodeling of the internal thoracic artery, probably because of endothelium-mediated mechanisms.
Resumo:
Renewable energy is growing in demand, and thus the the manufacture of solar cells and photovoltaic arrays has advanced dramatically in recent years. This is proved by the fact that the photovoltaic production has doubled every 2 years, increasing by an average of 48% each year since 2002. Covering the general overview of solar cell working, and its model, this thesis will start with the three generations of photovoltaic solar cell technology, and move to the motivation of dedicating research to nanostructured solar cell. For the current generation solar cells, among several factors, like photon capture, photon reflection, carrier generation by photons, carrier transport and collection, the efficiency also depends on the absorption of photons. The absorption coefficient,α, and its dependence on the wavelength, λ, is of major concern to improve the efficiency. Nano-silicon structures (quantum wells and quantum dots) have a unique advantage compared to bulk and thin film crystalline silicon that multiple direct and indirect band gaps can be realized by appropriate size control of the quantum wells. This enables multiple wavelength photons of the solar spectrum to be absorbed efficiently. There is limited research on the calculation of absorption coefficient in nano structures of silicon. We present a theoretical approach to calculate the absorption coefficient using quantum mechanical calculations on the interaction of photons with the electrons of the valence band. One model is that the oscillator strength of the direct optical transitions is enhanced by the quantumconfinement effect in Si nanocrystallites. These kinds of quantum wells can be realized in practice in porous silicon. The absorption coefficient shows a peak of 64638.2 cm-1 at = 343 nm at photon energy of ξ = 3.49 eV ( = 355.532 nm). I have shown that a large value of absorption coefficient α comparable to that of bulk silicon is possible in silicon QDs because of carrier confinement. Our results have shown that we can enhance the absorption coefficient by an order of 10, and at the same time a nearly constant absorption coefficient curve over the visible spectrum. The validity of plots is verified by the correlation with experimental photoluminescence plots. A very generic comparison for the efficiency of p-i-n junction solar cell is given for a cell incorporating QDs and sans QDs. The design and fabrication technique is discussed in brief. I have shown that by using QDs in the intrinsic region of a cell, we can improve the efficiency by a factor of 1.865 times. Thus for a solar cell of efficiency of 26% for first generation solar cell, we can improve the efficiency to nearly 48.5% on using QDs.
Resumo:
KIVA is a FORTRAN code developed by Los Alamos national lab to simulate complete engine cycle. KIVA is a flow solver code which is used to perform calculation of properties in a fluid flow field. It involves using various numerical schemes and methods to solve the Navier-Stokes equation. This project involves improving the accuracy of one such scheme by upgrading it to a higher order scheme. The numerical scheme to be modified is used in the critical final stage calculation called as rezoning phase. The primitive objective of this project is to implement a higher order numerical scheme, to validate and verify that the new scheme is better than the existing scheme. The latest version of the KIVA family (KIVA 4) is used for implementing the higher order scheme to support handling the unstructured mesh. The code is validated using the traditional shock tube problem and the results are verified to be more accurate than the existing schemes in reference with the analytical result. The convection test is performed to compare the computational accuracy on convective transfer; it is found that the new scheme has less numerical diffusion compared to the existing schemes. A four valve pentroof engine, an example case of KIVA package is used as application to ensure the stability of the scheme in practical application. The results are compared for the temperature profile. In spite of all the positive results, the numerical scheme implemented has a downside of consuming more CPU time for the computational analysis. The detailed comparison is provided. However, in an overview, the implementation of the higher order scheme in the latest code KIVA 4 is verified to be successful and it gives better results than the existing scheme which satisfies the objective of this project.
Resumo:
AIM: [(18)F]fluoro-deoxyglucose positron-emission-tomography (FDG-PET) detects metabolic activity in alveolar echinococcosis (AE). The slow changes in metabolic and morphological characteristics require long-term follow-up of patients. This is the first study to evaluate metabolic activity over may years, hereby assessing the utility of FDG-PET for the evaluation of disease progression and response to treatment. PATIENTS, METHODS: 15 patients received a follow-up FDG-PET combined with computed tomography (integrated PET/CT) with a median of 6.5 years after the first PET in 1999. Number and location of enhanced metabolic activity in the area of AE lesions was determined. Quantification of intensity of metabolic activity was assessed by calculation of mean standardized uptake values. RESULTS: AE lesions in 11/15 patients had been metabolically inactive initially, but only two showed permanent inactivity over the course of 81 months. Interestingly, in two patients metabolic activity was newly detected after 80 and 82 months. Benzimidazole treatment was intermittently discontinued in seven cases. Persisting activity at FDG-PET demanded continued benzimidazole treatment in four patients. Neither treatment duration, lesional size, calcifications nor regressive changes correlated with metabolic activity. CONCLUSION: Treatment responses are heterogeneous and vary from progressive disease despite treatment to long-term inactive disease with discontinued treatment. Lack of metabolic activity indicates suppressed parasite activity and is not equivalent to parasite death. However, metabolic activity may remain suppressed for years, allowing for temporary treatment discontinuation. Relapses are reliably detected with PET and restarting benzimidazole treatment prevents parasite expansion.
Resumo:
BACKGROUND: Sound epidemiologic data on halitosis are rare. We evaluated the prevalence of halitosis in a young male adult population in Switzerland using a standardized questionnaire and clinical examination. METHODS: Six hundred twenty-six Swiss Army recruits aged 18 to 25 years (mean: 20.3 years) were selected as study subjects. First, a standardized questionnaire focusing on dental hygiene, self-reported halitosis, smoking, and alcohol consumption was filled out by all participants. In the clinical examination, objective values for the presence of halitosis were gathered through an organoleptic assessment of the breath odor and the measurement of volatile sulfur compounds (VSCs). Additionally, tongue coating, plaque index, and probing depths were evaluated for each recruit. RESULTS: The questionnaire revealed that only 17% of all included recruits had never experienced halitosis. The organoleptic evaluation (grades 0 to 3) identified eight persons with grade 3, 148 persons with grade 2, and 424 persons with grade 1 or 0. The calculation of the Pearson correlation coefficient to evaluate the relationship among the three methods of assessing halitosis revealed little to no correlation. The organoleptic score showed high reproducibility (kappa = 0.79). Tongue coating was the only influencing factor found to contribute to higher organoleptic scores and higher VSC values. CONCLUSIONS: Oral malodor seemed to pose an oral health problem for about one-fifth of 20-year-old Swiss males questioned. No correlation between self-reported halitosis and organoleptic or VSC measurements could be detected. Although the organoleptic method described here offers a high reproducibility, the lack of correlation between VSC values and organoleptic scores has to be critically addressed. For further studies assessing new organoleptic scores, a validated index should always be included as a direct control.
Resumo:
High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments
Resumo:
To study the effect of fluoride on bone mineral density (BMD) in patients treated chronically with glucocorticosteroids, 15 subjects (renal grafted, n = 12; skin disease, n = 1; broncho pulmonary disorder, n = 1; Crohn's disease, n = 1) were prospectively studied in a double-blinded manner and randomly allocated either to group 1 (n = 8) receiving 13.2 mg/day fluoride given as disodium monofluorophosphate (MFP) supplemented with calcium (1,000 mg/day) and 25-hydroxyvitamin D (calcifediol) (50 micrograms/day), or to group 2 (n = 7) receiving Cas+ calcifediol alone. An additional group of 14 renal transplant patients treated chronically with glucocorticosteroids but exempt of specific therapeutic intervention for bone disease was set up as historical controls. BMD was measured by dual-energy X-ray absorptiometry (DXA, Hologic QDR 1000) performed at months 0, 6 and 12 for groups 1 and 2 (lumbar spine, total upper femur, diaphysis and epiphysis of distal tibia), or 11-31 months apart with calculation of linear yearly changes for the historical cohort. Lumbar BMD tended to rise in groups 1 and 2, and to fall in group 3, the change reaching statistical significance (p < 0.05) in group 1, thus leading to a significant difference between groups 1 and 3 (p < 0.05). At upper femur, tibial diaphysis and tibial epiphysis, no significant change in BMD occurred in any of the groups. In conclusion, lumbar BMD rises more after a mild dosis of fluoride given as MFP and combined to calcium and calcifediol than on Ca+ calcifediol alone, without changes in BMD at the upper femur or distal tibia.
Resumo:
Geometrical dependencies are being researched for analytical representation of the probability density function (pdf) for the travel time between a random, and a known or another random point in Tchebyshev’s metric. In the most popular case - a rectangular area of service - the pdf of this random variable depends directly on the position of the server. Two approaches have been introduced for the exact analytical calculation of the pdf: Ad-hoc approach – useful for a ‘manual’ solving of a specific case; by superposition – an algorithmic approach for the general case. The main concept of each approach is explained, and a short comparison is done to prove the faithfulness.
Resumo:
Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a cooling of several degrees. In the stratosphere, the strong heating leads to an acceleration of catalytic ozone loss and, consequently, to enhancements of UV radiation at the ground. In contrast to surface temperature and precipitation changes, which show a linear dependence to the soot burden, there is a saturation effect with respect to stratospheric ozone chemistry. Soot emissions of 5 Tg lead to an ozone column reduction of almost 50% in northern high latitudes, while emitting 12 Tg only increases ozone loss by a further 10%. In summary, this study, though using a different chemistry climate model, corroborates the previous investigations with respect to the atmospheric impacts. In addition to these persistent effects, the present study draws attention to episodically cold phases, which would likely add to the severity of human harm worldwide. The best insurance against such a catastrophic development would be the delegitimization of nuclear weapons.
Resumo:
This study uses survey data to investigate attitudes among Swiss voters to different models offering more freedom of choice in the educational system. There is a clear opposition to the use of taxpayer money to fund private schools, while free choice between public schools seems to appeal to a majority. The opinions appear to be based on a rational calculation of personal utility. For both types of choice, approval rates are lower for middle to high-income groups and individuals with a teaching qualification. Furthermore, residents of small to medium-sized towns are opposed to more school choice. On the support side, approval rates for private school choice are higher among parents of school-age children and residents in urban areas. The results also indicate differences between the country's language regions, attributable to intercultural differences in what people consider the role of the state.
Resumo:
We calculate the momentum diffusion coefficient for heavy quarks in SU(3) gluon plasma at temperatures 1-2 times the deconfinement temperature. The momentum diffusion coefficient is extracted from a Monte Carlo calculation of the correlation function of color electric fields, in the leading order of expansion in heavy quark mass. Systematics of the calculation are examined, and compared with perturbtion theory and other estimates.
Resumo:
In order to overcome the limitations of the linear-quadratic model and include synergistic effects of heat and radiation, a novel radiobiological model is proposed. The model is based on a chain of cell populations which are characterized by the number of radiation induced damages (hits). Cells can shift downward along the chain by collecting hits and upward by a repair process. The repair process is governed by a repair probability which depends upon state variables used for a simplistic description of the impact of heat and radiation upon repair proteins. Based on the parameters used, populations up to 4-5 hits are relevant for the calculation of the survival. The model describes intuitively the mathematical behaviour of apoptotic and nonapoptotic cell death. Linear-quadratic-linear behaviour of the logarithmic cell survival, fractionation, and (with one exception) the dose rate dependencies are described correctly. The model covers the time gap dependence of the synergistic cell killing due to combined application of heat and radiation, but further validation of the proposed approach based on experimental data is needed. However, the model offers a work bench for testing different biological concepts of damage induction, repair, and statistical approaches for calculating the variables of state.
Resumo:
Discrepancies in finite-element model predictions of bone strength may be attributed to the simplified modeling of bone as an isotropic structure due to the resolution limitations of clinical-level Computed Tomography (CT) data. The aim of this study is to calculate the preferential orientations of bone (the principal directions) and the extent to which bone is deposited more in one direction compared to another (degree of anisotropy). Using 100 femoral trabecular samples, the principal directions and degree of anisotropy were calculated with a Gradient Structure Tensor (GST) and a Sobel Structure Tensor (SST) using clinical-level CT. The results were compared against those calculated with the gold standard Mean-Intercept-Length (MIL) fabric tensor using micro-CT. There was no significant difference between the GST and SST in the calculation of the main principal direction (median error=28°), and the error was inversely correlated to the degree of transverse isotropy (r=−0.34, p<0.01). The degree of anisotropy measured using the structure tensors was weakly correlated with the MIL-based measurements (r=0.2, p<0.001). Combining the principal directions with the degree of anisotropy resulted in a significant increase in the correlation of the tensor distributions (r=0.79, p<0.001). Both structure tensors were robust against simulated noise, kernel sizes, and bone volume fraction. We recommend the use of the GST because of its computational efficiency and ease of implementation. This methodology has the promise to predict the structural anisotropy of bone in areas with a high degree of anisotropy, and may improve the in vivo characterization of bone.
Resumo:
Somatostatin receptor PET tracers such as [68Ga-DOTA,1-Nal3]-octreotide (68Ga-DOTANOC) and [68Ga-DOTA,Tyr3]-octreotate (68Ga-DOTATATE) have shown promising results in patients with neuroendocrine tumors, with a higher lesion detection rate than is achieved with 18F-fluorodihydroxyphenyl-l-alanine PET, somatostatin receptor SPECT, CT, or MR imaging. 68Ga-DOTANOC has high affinity for somatostatin receptor subtypes 2, 3, and 5 (sst2,3,5). It has a wider receptor binding profile than 68Ga-DOTATATE, which is sst2-selective. The wider receptor binding profile might be advantageous for imaging because neuroendocrine tumors express different subtypes of somatostatin receptors. The goal of this study was to prospectively compare 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT in the same patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and to evaluate the clinical impact of 68Ga-DOTANOC PET/CT. Methods: Eighteen patients with biopsy-proven GEP-NETs were evaluated with 68Ga-DOTANOC and 68Ga-DOTATATE using a randomized crossover design. Labeling of DOTANOC and DOTATATE with 68Ga was standardized using a fully automated synthesis device. PET/CT findings were compared with 3-phase CT scans and in some patients with MR imaging, 18F-FDG PET/CT, and histology. Uptake in organs and tumor lesions was quantified and compared by calculation of maximum standardized uptake values (SUVmax) using volume computer-assisted reading. Results: Histology revealed low-grade GEP-NETs (G1) in 4 patients, intermediate grade (G2) in 7, and high grade (G3) in 7. 68Ga-DOTANOC and 68Ga-DOTATATE were false-negative in only 1 of 18 patients. In total, 248 lesions were confirmed by cross-sectional and PET imaging. The lesion-based sensitivity of 68Ga-DOTANOC PET was 93.5%, compared with 85.5% for 68Ga-DOTATATE PET (P = 0.005). The better performance of 68Ga-DOTANOC PET is attributed mainly to the significantly higher detection rate of liver metastases rather than tumor differentiation grade. Multivariate analysis revealed significantly higher SUVmax in G1 tumors than in G3 tumors (P = 0.009). This finding was less pronounced with 68Ga-DOTANOC (P > 0.001). Altogether, 68Ga-DOTANOC changed treatment in 3 of 18 patients (17%). Conclusion: The sst2,3,5-specific radiotracer 68Ga-DOTANOC detected significantly more lesions than the sst2-specific radiotracer 68Ga-DOTATATE in our patients with GEP-NETs. The clinical relevance of this finding has to be proven in larger studies.