1000 resultados para alkali soils
Resumo:
Soil fauna in the extreme conditions of Antarctica consists of a few microinvertebrate species patchily distributed at different spatial scales. Populations of the prostigmatic mite Stereotydeus belli and the collembolan Gressittacantha terranova from northern Victoria Land (Antarctica) were used as models to study the effect of soil properties on microarthropod distributions. In agreement with the general assumption that the development and distribution of life in these ecosystems is mainly controlled by abiotic factors, we found that the probability of occurrence of S. belli depends on soil moisture and texture and on the sampling period (which affects the general availability of water); surprisingly, none of the analysed variables were significantly related to the G. terranova distribution. Based on our results and literature data, we propose a theoretical model that introduces biotic interactions among the major factors driving the local distribution of collembolans in Antarctic terrestrial ecosystems. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Geologic and environmental factors acting over varying spatial scales can control
trace element distribution and mobility in soils. In turn, the mobility of an element in soil will affect its oral bioaccessibility. Geostatistics, kriging and principal component analysis (PCA) were used to explore factors and spatial ranges of influence over a suite of 8 element oxides, soil organic carbon (SOC), pH, and the trace elements nickel (Ni), vanadium (V) and zinc (Zn). Bioaccessibility testing was carried out previously using the Unified BARGE Method on a sub-set of 91 soil samples from the Northern Ireland Tellus1 soil archive. Initial spatial mapping of total Ni, V and Zn concentrations shows their distributions are correlated spatially with local geologic formations, and prior correlation analyses showed that statistically significant controls were exerted over trace element bioaccessibility by the 8 oxides, SOC and pH. PCA applied to the geochemistry parameters of the bioaccessibility sample set yielded three principal components accounting for 77% of cumulative variance in the data
set. Geostatistical analysis of oxide, trace element, SOC and pH distributions using 6862 sample locations also identified distinct spatial ranges of influence for these variables, concluded to arise from geologic forming processes, weathering processes, and localised soil chemistry factors. Kriging was used to conduct a spatial PCA of Ni, V and Zn distributions which identified two factors comprising the majority of distribution variance. This was spatially accounted for firstly by basalt rock types, with the second component associated with sandstone and limestone in the region. The results suggest trace element bioaccessibility and distribution is controlled by chemical and geologic processes which occur over variable spatial ranges of influence.
Resumo:
The commonly used British Standard constant head triaxial permeability (BS) test, for permeability testing of fine grained soils, is known to have a relatively long test duration. Consequently, a reduction in the required time for permeability test provides potential cost savings, to the construction industry (specifically, for use during Construction Quality Control (CQA) of landfill mineral liners). The purpose of this article is to investigate and evaluate alternative short duration testing methods for the measurement of the permeability of fine grained soils.
As part of the investigation the feasibility of an existing method of short duration permeability test, known as the Accelerated Permeability (AP) test was assessed and compared with permeability measured using British Standard method (BS) and Ramp Accelerated Permeability (RAP). Four different fine grained materials, of a variety of physical properties were compacted at various moisture contents to produced analogous samples for testing using three the three different methodologies. Fabric analysis was carried out on specimens derived from post-test samples using Mercury Intrusion Porosimetry (MIP) and Scanning Electron Microscope (SEM) to assess the effects of testing methodology on soil structure. Results showed that AP testing in general under predicts permeability values derived from the BS test due to large changes in structure of the soil caused by AP test methodology, which is also validated using MIP and SEM observations. RAP testing, in general provides an improvement to the AP test but still under-predicts permeability values. The potential savings in test duration are shown to be relatively minimal for both the AP and RAP tests.
Resumo:
There has been much debate in the literature over the past 60 years regarding an appropriate oven-drying temperature for water content determinations in peat and other organic soils. For inorganic soils, the water content is usually based on the equilibrium dry mass corresponding to drying temperatures in the range 100-110°C. However, for peat and other organic soils, several researchers have recommended lower drying temperatures in the range 60-90°C in an attempt to prevent possible charring, oxidation, and/or vaporization of substances other than pore water. However, all of the relevant water is not fully evaporated at too low a temperature, and because specimen dry mass is a function of drying temperature, the resulting water content values are lower than those determined for the temperature range 100-110°C. Experimental data reported in this article show that oven drying of peat and other organic soils at 100-110°C using either gravity-convection or forced-draft ovens is acceptable for routine water content determinations. Because a standardized oven temperature is desirable when correlating water content with other material properties, it is recommended that oven drying of peat and other organic soils be performed over temperature ranges of either 105-110°C or 105 ± 5°C, in line with standardized ranges for inorganic soils. © 2014 Copyright Taylor & Francis Group, LLC.
Resumo:
A number of constitutive models that account for creep or secondary compression and rate dependent behaviour of soil have been reviewed in terms of their strengths and weaknesses. Some results of numerical analysis of some embankments have been discussed and an effort has been made to find out their strengths and limitations.
Resumo:
Geogenic nickel (Ni), vanadium (V) and chromium (Cr) are present at elevated levels in soils in Northern Ireland. Whilst Ni, V and Cr total soil concentrations share common geological origins, their respective levels of oral bioaccessibility are influenced by different soil-geochemical factors. Oral bioaccessibility extractions were carried out on 145 soil samples overlying 9 different bedrock types to measure the bioaccessible portions of Ni, V and Cr. Principal component analysis identified two components (PC1 and PC2) accounting for 69% of variance across 13 variables from the Northern Ireland Tellus Survey geochemical data. PC1 was associated with underlying basalt bedrock, higher bioaccessible Cr concentrations and lower Ni bioaccessibility. PC2 was associated with regional variance in soil chemistry and hosted factors accounting for higher Ni and V bioaccessibility. Eight per cent of total V was solubilised by gastric extraction on average across the study area. High median proportions of bioaccessible Ni were observed in soils overlying sedimentary rock types. Whilst Cr bioaccessible fractions were low (max = 5.4%), the highest measured bioaccessible Cr concentration reached 10.0 mg kg-1, explained by factors linked to PC1 including high total Cr concentrations in soils overlying basalt bedrock.
Resumo:
Abstract Image
A high-capacity diffusive gradients in thin films (DGT) technique has been developed for measurement of total dissolved inorganic arsenic (As) using a long shelf life binding gel layer containing hydrous zirconium oxide (Zr-oxide). Both As(III) and As(V) were rapidly accumulated in the Zr-oxide gel and could be quantitatively recovered by elution using 1.0 M NaOH for freshwater or a mixture of 1.0 M NaOH and 1.0 M H2O2 for seawater. DGT uptake of As(III) and As(V) increased linearly with deployment time and was independent of pH (2.0–9.1), ionic strength (0.01–750 mM), the coexistence of phosphate (0.25–10 mg P L–1), and the aging of the Zr-oxide gel up to 24 months after production. The capacities of the Zr-oxide DGT were 159 μg As(III) and 434 μg As(V) per device for freshwater and 94 μg As(III) and 152 μg As(V) per device for seawater. These values were 5–29 times and 3–19 times more than those reported for the commonly used ferrihydrite and Metsorb DGTs, respectively. Deployments of the Zr-oxide DGT in As-spiked synthetic seawater provided accurate measurements of total dissolved inorganic As over the 96 h deployment, whereas ferrihydrite and Metsorb DGTs only measured the concentrations accurately up to 24 and 48 h, respectively. Deployments in soils showed that the Zr-oxide DGT was a reliable and robust tool, even for soil samples heavily polluted with As. In contrast, As in these soils was underestimated by ferrihydrite and Metsorb DGTs due to insufficient effective capacities, which were likely suppressed by the competing effects of phosphate.
Alkali Activated Fuel Ash and Slag Mixes:Optimization Study from Mortars to Concrete Building Blocks
Resumo:
Alkali activated binders, based on ash and slag, also known as geopolymers, can play a key role in reducing the carbon footprint of the construction sector by replacing ordinary Portland cement in some concretes. Since 1970s, research effort has been ongoing in many research institutions. In this study, pulverized fuel ash (PFA) from a UK power plant, ground granulated blast furnace slag (GGBS) and combinations of the two have been investigated as geopolymer binders for concrete applications. Activators used were sodium hydroxide and sodium silicate solutions. Mortars with sand/binder ratio of 2.75 with several PFA and GGBS combinations have been mixed and tested. The optimization of alkali dosage (defined as the Na2O/binder mass ratio) and modulus (defined as the Na2O/SiO2 mass ratio) resulted in strengths in excess of 70 MPa for tested mortars. Setting time and workability have been considered for the identification of the best combination of PFA/GGBS and alkali activator dosage for different precast concrete products. Geopolymer concrete building blocks have been replicated in laboratory and a real scale factory trial has been successfully carried out. Ongoing microstructural characterization is aiming to identify reaction products arising from PFA/GGBS combinations.
Resumo:
In this study, some limitations associated with modeling the hydraulic conductivity of soil improved with vertical drains are discussed. In addition, some limitations of conventional methodologies for deducing the hydraulic conductivity from oedometer or Rowe cell tests are investigated. An alternative approach for estimating the hydraulic conductivity in soils improved by vertical drains is discussed. This methodology will allow for simpler finite element modeling of consolidation due to vertical drains. The effectiveness of this technique has been demonstrated using a field study.
Resumo:
Soils and saprolites developed from interbedded shales and limestones of the Conasauga Group are widespread in the Valley and Ridge Province of East Tennessee. Thin sections from four soil profiles were examined by petrographic and scanning electron microscopy including backscatter electron and energy-dispersive X-ray analyses. Iron and manganese released by weathering had migrated differentially downward and precipitated as crystalline and noncrystalline oxides. Oxides were observed as nodules, granular particulates, pore fillings, and coatings on other minerals, packing voids, vesicles, channels, and chambers. Iron oxides formed predominantly as coatings on packing-void walls and on laminated clays in vesicles and channels. Manganese oxides occurred as an early replacement phase of packing voids and of fracture-filling carbonate minerals. Iron oxides were dominant in moderately well-drained and oxidized horizons of the soil solum, whereas manganese oxides were abundant in the oxidized and moderately leached saprolite zone where the water table fluctuates seasonally. Therefore, a manganese enrichment zone, on a bulk soil basis, occurred generally below the iron oxide zone in the soil profile. Such differential migration and accumulation of iron and manganese have been controlled by localized soil microenvironments. Micromorphologic features observed in this study are important in land-use evaluation for hazardous waste disposal. © 1990.
Resumo:
Alkali activated slag (AAS) is an alternative cementitious material. Sodium silicate solution is usually used to activate ground granulated blast furnace slag to produce AAS. As a consequence, the pore solution chemistry of AAS differs from that of Portland cement (PC). Although AAS offers many advantages over PC, such as higher strength, superior resistance to acid and sulphate environments and lower embodied carbon due to 100% PC replacement, there is a need to assess its performance against chloride induced corrosion duo to its different pore solution chemistry. For PC systems, resistivity measurement, as a type of nondestructive test, is usually used to evaluate its chloride diffusivity and the corrosion rate of the embedded steel. However, due to the different pore solution chemistry present in the different AAS systems, the application of this test in AAS concretes would be questionable as the resistivity of concrete is highly dependent on its conductivity of the pore solution. Therefore, a study was carried out using twelve AAS concretes mixes, the results of which are reported in this paper. The AAS mixes were designed with alkali concentration of 4%, 6% and 8% (Na2O% of the mass of slag) and modulus (Ms) of sodium silicate solution of 0.75, 1.00, 1.50 and 2.00. A PC concrete with the same binder content as the AAS concretes was also studied as a reference. The chloride diffusion coefficient was determined using a non-steady state chloride diffusion test (NT BUILD 443). The resistivity of the concretes before the diffusion test was also measured. Macrocell corrosion current (corrosion rate) for steel rods embedded in the concretes was measured whilst subjecting the concretes to a cyclic chloride ponding regime (1 day ponded with salt solution and 6 days drying). The results showed that the AAS concretes had lower chloride diffusivity with associated higher resistivity than the PC concrete. The measured corrosion rate was also lower for the AAS concretes. However, unlike the PC, in which a higher resistivity yields a lower diffusivity and corrosion rate, there was no relationship apparent between the resistivity and either the diffusivity or the corrosion rate of steel for the AAS concretes. This is assigned to the variation of the pore solution composition of the AAS concretes. This also means that resistivity measurements cannot be depended on for assessing the chloride induced corrosion resistance of AAS concretes.