996 resultados para aeronautics and astronautics


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract not available

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new type of space debris was recently discovered by Schildknecht in near -geosynchronous orbit (GEO). These objects were later identified as exhibiting properties associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness magnitudes (light curve), high rotation rates and composition properties (albedo, amount of specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer insulation (MLI). Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that their shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time. This thesis proposes a simple effective flexible model of the thin, deformable membrane with two different methods. Firstly, this debris is modelled with Finite Element Analysis (FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is constructed with beam elements consisting 2 nodes and each node has six degrees of freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the debris based on multibody dynamics theory call “Multibody model” is modelled as a series of lump masses, connected through flexible joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account with lump masses in the joints. The dynamic equations for the masses, including the constraints defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. The physical properties of both flexible models required by the models (membrane density, reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both flexible membrane models are then propagated together with classical orbital and attitude equations of motion near GEO region to predict the orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields and self-shadowing effect. These results are then compared to two rigid body models (cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, the evolutions of orbital elements of the flexible models indicate the difference of inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable cross-section area due to a deformation over time. Then, the Monte Carlo simulations by varying initial attitude dynamics and deformed angle are investigated and compared with rigid models over 100 days. As the results of the simulations, the different initial conditions provide unique orbital motions, which is significantly different in term of orbital motions of both rigid models. Furthermore, this thesis presents a methodology to determine the material dynamic properties of thin membranes and validates the deformation of the multibody model with real MLI materials. Experiments are performed in a high vacuum chamber (10-4 mbar) replicating space environment. A thin membrane is hinged at one end but free at the other. The free motion experiment, the first experiment, is a free vibration test to determine the damping coefficient and natural frequency of the thin membrane. In this test, the membrane is allowed to fall freely in the chamber with the motion tracked and captured through high velocity video frames. A Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. The forced motion experiment, the last test, is performed to determine the deformation characteristics of the object. A high power spotlight (500-2000W) is used to illuminate the MLI and the displacements are measured by means of a high resolution laser sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups are used for the validation of the flexible model by comparing with the experimental results of displacements and natural frequencies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Signifying road-related events with warnings can be highly beneficial, especially when imminent attention is needed. This thesis describes how modality, urgency and situation can influence driver responses to multimodal displays used as warnings. These displays utilise all combinations of audio, visual and tactile modalities, reflecting different urgency levels. In this way, a new rich set of cues is designed, conveying information multimodally, to enhance reactions during driving, which is a highly visual task. The importance of the signified events to driving is reflected in the warnings, and safety-critical or non-critical situations are communicated through the cues. Novel warning designs are considered, using both abstract displays, with no semantic association to the signified event, and language-based ones, using speech. These two cue designs are compared, to discover their strengths and weaknesses as car alerts. The situations in which the new cues are delivered are varied, by simulating both critical and non-critical events and both manual and autonomous car scenarios. A novel set of guidelines for using multimodal driver displays is finally provided, considering the modalities utilised, the urgency signified, and the situation simulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hub-and-spoke networks are widely studied in the area of location theory. They arise in several contexts, including passenger airlines, postal and parcel delivery, and computer and telecommunication networks. Hub location problems usually involve three simultaneous decisions to be made: the optimal number of hub nodes, their locations and the allocation of the non-hub nodes to the hubs. In the uncapacitated single allocation hub location problem (USAHLP) hub nodes have no capacity constraints and non-hub nodes must be assigned to only one hub. In this paper, we propose three variants of a simple and efficient multi-start tabu search heuristic as well as a two-stage integrated tabu search heuristic to solve this problem. With multi-start heuristics, several different initial solutions are constructed and then improved by tabu search, while in the two-stage integrated heuristic tabu search is applied to improve both the locational and allocational part of the problem. Computational experiments using typical benchmark problems (Civil Aeronautics Board (CAB) and Australian Post (AP) data sets) as well as new and modified instances show that our approaches consistently return the optimal or best-known results in very short CPU times, thus allowing the possibility of efficiently solving larger instances of the USAHLP than those found in the literature. We also report the integer optimal solutions for all 80 CAB data set instances and the 12 AP instances up to 100 nodes, as well as for the corresponding new generated AP instances with reduced fixed costs. Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing need to patrol and survey large maritime and terrestrial areas increased the need to integrate external sensors on aircraft in order to accomplish those patrols at increasingly higher altitudes, longer range and not depending upon vehicle type. The main focus of this work is to elaborate a practical, simple, effective and efficient methodology for the aircraft modification procedure resulting from the integration of an Elec-tro-Optical/Infra-Red (EO/IR) turret through a support structure. The importance of the devel-opment of a good methodology relies on the correct management of project variables as time, available resources and project complexity. The key is to deliver a proper tool for a project de-sign team that will be used to create a solution that fulfils all technical, non-technical and certi-fication requirements present in this field of transportation. The created methodology is inde-pendent of two main inputs: sensor model and aircraft model definition, and therefore it is in-tended to deliver the results for different projects besides the one that was presented in this work as a case study. This particular case study presents the development of a structure support for FLIR STAR SAPHIRE III turret integration on the front lower fuselage bulkhead (radome) of the LOCKHEED MARTIN C-130 H. Development of the case study focuses on the study of local structural analysis through the use of Finite Element Method (FEM). Development of this Dissertation resulted in a cooperation between Faculty of Science and Technology - Universidade Nova de Lisboa and the company OGMA - Indústria Aeronáutica de Portugal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network airlines have been increasingly focusing their operations on hub airports through the exploitation of connecting traffic, allowing them to take advantage of economies of traffic density, which are unequivocal in the airline industry. Less attention has been devoted to airlines? decisions on point-to-point thin routes, which could be served using different aircraft technologies and different business models. This paper examines, both theoretically and empirically, the impact on airlines ?networks of the two major innovations in the airline industry in the last two decades: the regional jet technology and the low-cost business model. We show that, under certain circumstances, direct services on point-to-point thin routes can be viable and thus airlines may be interested in deviating passengers out of the hub.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use a difference-in-difference estimator to examine the effects of a merger involving three airlines. The novelty lies in the examination of this operation in two distinct scenarios: (1) on routes where two low-cost carriers and (2) on routes where a network and one of the low-cost airlines had previously been competing. We report a reduction in frequencies but no substantial effect on prices in the first scenario, while in the second we report an increase in prices but no substantial effect on frequencies. These results may be attributed to the differences in passenger types flying on these routes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Prehospital oligoanalgesia is prevalent among trauma victims, even when the emergency medical services team includes a physician. We investigated if not only patients' characteristics but physicians' practice variations contributed to prehospital oligoanalgesia. METHODS: Patient records of conscious adult trauma victims transported by our air rescue helicopter service over 10 yr were reviewed retrospectively. Oligoanalgesia was defined as a numeric rating scale (NRS) >3 at hospital admission. Multilevel logistic regression analysis was used to predict oligoanalgesia, accounting first for patient case-mix, and then physician-level clustering. The intraclass correlation was expressed as the median odds ratio (MOR). RESULTS: A total of 1202 patients and 77 physicians were included in the study. NRS at the scene was 6.9 (1.9). The prevalence of oligoanalgesia was 43%. Physicians had a median of 5.7 yr (inter-quartile range: 4.2-7.5) of post-graduate training and 27% were female. In our multilevel analysis, significant predictors of oligoanalgesia were: no analgesia [odds ratio (OR) 8.8], National Advisory Committee for Aeronautics V on site (OR 4.4), NRS on site (OR 1.5 per additional NRS unit >4), female physician (OR 2.0), and years of post-graduate experience [>4.0 to ≤5.0 (OR 1.3), >3.0 to ≤4.0 (OR 1.6), >2.0 to ≤3.0 (OR 2.6), and ≤2.0 yr (OR 16.7)]. The MOR was 2.6, and was statistically significant. CONCLUSIONS: Physicians' practice variations contributed to oligoanalgesia, a factor often overlooked in analyses of prehospital pain management. Further exploration of the sources of these variations may provide innovative targets for quality improvement programmes to achieve consistent pain relief for trauma victims.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Crevasse accidents can lead to severe injuries and even death, but little is known about their epidemiology and mortality. METHODS: We retrospectively reviewed helicopter-based emergency services rescue missions for crevasse victims in Switzerland between 2000 and 2010. Demographic and epidemiological data were collected. Injury severity was graded according to the National Advisory Committee for Aeronautics (NACA) score. RESULTS: A total of 415 victims of crevasse falls were included in the study. The mean victim age was 40 years (SD 13) (range 6-75), 84% were male, and 67% were foreigners. The absolute number of victims was much higher during the months of March, April, July, and August, amounting to 73% of all victims; 77% of victims were practicing mountaineering or ski touring. The mean depth of fall was 16.5m (SD 9.0) (range 1-35). Overall on-site mortality was 11%, and it was higher during the ski season than the ski offseason (14% vs. 7%; P=0.01), for foreigners (14% vs. 5%; P=0.01), and with higher mean depth of fall (22 vs. 15m; P=0.01). The NACA score was ≥4 for 22% of the victims, indicating potential or overt vital threatening injuries, but 24% of the victims were uninjured (NACA 0). Multivariable analyses revealed that depth of the fall, summer season, and snowshoeing were associated with higher NACA scores, whereas depth of the fall, snowshoeing, and foreigners but not season were associated with higher risk of death. CONCLUSION: The clinical spectrum of injuries sustained by the 415 patients in this study ranged from benign to life-threatening. Death occurred in 11% of victims and seems to be determined primarily by the depth of the fall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper estimates a model of airline competition for the Spanish air transport market. I test the explanatory power of alternative oligopoly models with capacity constraints. In addition, I analyse the degree of density economies. Results show that Spanish airlines conduct follows a price-leadership scheme so that it is less competitive than the Cournot solution. I also find evidence that thin routes can be considered as natural monopolies