977 resultados para adrenocortical cell cycle
Resumo:
The cell is continuously subjected to various forms of external and intrinsic proteindamaging stresses, including hyperthermia, pathophysiological states, as well as cell differentiation and proliferation. Proteindamaging stresses result in denaturation and improper folding of proteins, leading to the formation of toxic aggregates that are detrimental for various pathological conditions, including Alzheimer’s and Huntington’s diseases. In order to maintain protein homeostasis, cells have developed different cytoprotective mechanisms, one of which is the evolutionary well-conserved heat shock response. The heat shock response results in the expression of heat shock proteins (Hsps), which act as molecular chaperones that bind to misfolded proteins, facilitate their refolding and prevent the formation of protein aggregates. Stress-induced expression of Hsps is mediated by a family of transcription factors, the heat shock factors, HSFs. Of the four HSFs found in vertebrates, HSF1-4, HSF1 is the major stress-responsive factor that is required for the induction of the heat shock response. HSF2 cannot alone induce Hsps, but modulates the heat shock response by forming heterotrimers with HSF1. HSFs are not only involved in the heat shock response, but they have also been found to have a function in development, neurodegenerative disorders, cancer, and longevity. Therefore, insight into how HSFs are regulated is important for the understanding of both normal physiological and disease processes. The activity of HSF1 is mainly regulated by intricate post-translational modifications, whereas the activity of HSF2 is concentrationdependent. However, there is only limited understanding of how the abundance of HSF2 is regulated. This study describes two different means of how HSF2 levels are regulated. In the first study it was shown that microRNA miR-18, a member of the miR-17~92 cluster, directly regulates Hsf2 mRNA stability and thus protein levels. HSF2 has earlier been shown to play a profound role in the regulation of male germ cell maturation during the spermatogenesis. The effect on miR-18 on HSF2 was examined in vivo by transfecting intact seminiferous tubules, and it was found that inhibition of miR-18 resulted in increased HSF2 levels and modified expression of the HSF2 targets Ssty2 and Speer4a. HSF2 has earlier been reported to modulate the heat shock response by forming heterotrimers with HSF1. In the second study, it was shown that HSF2 is cleared off the Hsp70 promoter and degraded by the ubiquitinproteasome pathway upon acute stress. By silencing components of the anaphase promoting complex/cyclosome (APC/C), including the co-activators Cdc20 and Cdh1, it was shown that APC/C mediates the heatinduced ubiquitylation of HSF2. Furthermore, down-regulation of Cdc20 was shown to alter the expression of heat shock-responsive genes. Next, we studied if APC/C-Cdc20, which controls cell cycle progression, also regulates HSF2 during the cell cycle. We found that both HSF2 mRNA and protein levels decreased during mitosis in several but not all human cell lines, indicating that HSF2 has a function in mitotic cells. Interestingly, although transcription is globally repressed during mitosis, mainly due to the displacement of RNA polymerase II and transcription factors, including HSF1, from the mitotic chromatin, HSF2 is capable of binding DNA during mitosis. Thus, during mitosis the heat shock response is impaired, leaving mitotic cells vulnerable to proteotoxic stress. However, in HSF2-deficient mitotic cells the Hsp70 promoter is accessible to both HSF1 and RNA polymerase II, allowing for stress-inducible Hsp expression to occur. As a consequence HSF2-deficient mitotic cells have a survival advantage upon acute heat stress. The results, presented in this thesis contribute to the understanding of the regulatory mechanisms of HSF2 and its function in the heat shock response in both interphase and mitotic cells.
Resumo:
The effect of crude xyloglucan (XG) preparations from jatobá (Hymenaea courbaril var. stilbocarpa (Hayne) Y. T. Lee & Langenh.) seeds on Arabidopsis thaliana (L.) Heynh. root system development was investigated. The XG extracts exerted a dual effect on root system development by slowing down root growth and improving lateral root formation. These observed morphological changes were not due to oligosaccharides that could be generated following hydrolysis of the XG polymers, since XG hydrolysate induced a drastic inhibition of the overall growth process of the Arabidopsis thaliana seedlings. Histochemical test of GUS gene expression assay performed on seven and 14-days-old transgenic Arabidopsis thaliana plants carrying the CycB1;1-GUS fusion indicated that the improvement of the lateral root development by jatobá XG extracts was not correlated with the expression of this cell cycle marker gene in the root system. A potential agricultural application of jatobá seeds XG extract is discussed.
Resumo:
Several studies have demonstrated that lymphocytes from patients with Down syndrome (DS) exhibit an increased frequency of chromosome aberrations when they are exposed to ionizing radiation or to chemicals at the G0 or G1 phases of the cell cycle, but not at G2, when compared to normal subjects. To determine the susceptibility of DS lymphocytes at G2 phase, bleomycin, a radiomimetic agent, was used to induce DNA breaks in blood cultures from 24 Down syndrome patients. All the patients with DS showed free trisomy 21 (47,XX + 21 or 47,XY + 21). Individuals that showed an average number of chromatid breaks per cell higher than 0.8 were considered sensitive to the drug. No control child showed susceptibility to bleomycin, and among the 24 patients with DS, only one was sensitive to the drug. No significant difference was observed between the two groups, regarding chromatid break frequencies in treated G2 lymphocytes. The distribution of bleomycin-induced breaks in each group of chromosomes was similar for DS and controls. No significant difference was found in the response to bleomycin between male and female subjects. Probably, the main factor involved in chromosome sensitivity of lymphocytes from patients with DS is the phase of the cell cycle in which the cell is treated.
Resumo:
Combined therapy with radiation and chemotherapy has being increasingly used in cancer treatment. The effect of combinations of taxol (0.08 mug/ml) with doxorubicin (DXR, 0.5 or 1.0 mug/ml) or gamma radiation (20 or 40 cGy) was examined in two different treatment schedules (pretreatment or simultaneous treatment) using Chinese hamster ovary (CHO) cells treated at the G2 phase of the cell cycle. The results showed that taxol did not have a radiosensitizing effect on the chromosomal aberrations induced by gamma radiation nor did it have a potentiating effect on the chromosomal aberrations induced by DXR in CHO cells treated in the G2 phase of the cell cycle
Resumo:
The surgical specimens from 51 men submitted to radical prostatectomy for localized prostate cancer were examined by immunohistochemistry using proliferation cell nuclear antigen (PCNA) monoclonal antibody to evaluate the proliferative index (PI). The relationship between PI, biological variables and p53 protein expression was evaluated by immunohistochemistry. PI was low in invasive localized prostate carcinoma (mean, 12.4%) and the incidence of PCNA-positive cells was significantly higher in tumors with p53 expression (P = 0.0226). There was no statistical difference in PCNA values when biological parameters such as Gleason score, tumor volume, extraprostatic involvement, seminal vesicle infiltration or lymph node metastasis were considered. We conclude that proliferative activity is usually low in prostate carcinoma but is correlated with p53 immune staining, indicating that p53 is important in cell cycle control in this neoplasm.
Resumo:
Induction of apoptosis by tumor necrosis factor (TNF) is modulated by changes in the expression and activity of several cell cycle regulatory proteins. We examined the effects of TNF (1-100 ng/ml) and butyrolactone I (100 µM), a specific inhibitor of cyclin-dependent kinases (CDK) with high selectivity for CDK-1 and CDK-2, on three different cancer cell lines: WEHI, L929 and HeLa S3. Both compounds blocked cell growth, but only TNF induced the common events of apoptosis, i.e., chromatin condensation and ladder pattern of DNA fragmentation in these cell lines. The TNF-induced apoptosis events were increased in the presence of butyrolactone. In vitro phosphorylation assays for exogenous histone H1 and endogenous retinoblastoma protein (pRb) in the total cell lysates showed that treatment with both TNF and butyrolactone inhibited the histone H1 kinase (WEHI, L929 and HeLa) and pRb kinase (WEHI) activities of CDKs, as compared with the controls. The role of proteases in the TNF and butyrolactone-induced apoptosis was evaluated by comparing the number and expression of polypeptides in the cell lysates by gel electrophoresis. TNF and butyrolactone treatment caused the disappearance of several cellular protein bands in the region between 40-200 kDa, and the 110- 90- and 50-kDa proteins were identified as the major substrates, whose degradation was remarkably increased by the treatments. Interestingly, the loss of several cellular protein bands was associated with the marked accumulation of two proteins apparently of 60 and 70 kDa, which may be cleavage products of one or more proteins. These findings link the decrease of cyclin-dependent kinase activities to the increase of protease activities within the growth arrest and apoptosis pathways induced by TNF.
Resumo:
Breast cancer is a highly heterogenous malignancy, which despite of the similar histological type shows different clinical behaviour and response to therapy. Prognostic factors are used to estimate the risk for recurrence and the likelihood of treatment effectiveness. Because breast cancer is one of the most common causes of cancer death in women worldwide, identification of new prognostic markers are needed to develop more specific and targeted therapies. Cancer is caused by uncontrolled cell proliferation. The cell cycle is controlled by specific proteins, which are known as cyclins. They function at important checkpoints by activating cyclin-dependent kinase enzymes. Overexpression of different cyclins has been linked to several cancer types and altered expression of cyclins A, B1, D1 and E has been associated with poor survival. Little is known about the combined expression of cyclins in relation to the tumour grade, breast cancer subtype and other known prognostic factors. In this study cyclins A, B1 and E were shown to correlate with histological grade, Ki-67 and HER2 expression. Overexpression of cyclin D1 correlated with receptor status and non-basal breast cancer suggesting that cyclin D1 might be a marker of good prognosis. Proteolysis in the surrounding tumour stroma is increased during cancer development. Matrix metalloproteinases (MMPs) are proteolytic enzymes that are capable of degrading extracellular matrix proteins. Increased expression and activation of several MMPs have been found in many cancers and MMPs appear to be important regulators of invasion and metastasis. In this study MMP-1 expression was analysed in breast cancer epithelial cells and in cancer associated stromal cells. MMP-1 expression by breast cancer epithelial cells was found to carry an independent prognostic value as did Ki-67 and bcl-2. The results suggest that in addition to stromal cells MMP-1 expression in tumour cells control breast cancer progression. Decorin is a small proteoglycan and an important component of the extracellular matrix. Decorin has been shown to inhibit growth of tumour cells and reduced decorin expression is associated with a poor prognosis in several cancer types. There has been some suspicion wheather different cancer cells express decorin. In this study decorin expression was shown to localize only in the cells of the original stroma, while breast cancer epithelial cells were negative for decorin expression. However, transduction of decorin in decorin-negative human breast cancer cells markedly modulated the growth pattern of these cells. This study provides evidence that targeted decorin transduction to breast cancer cells could be used as a novel adjuvant therapy in breast malignancies.
Somaclonal variation: a morphogenetic and biochemical analysis of Mandevilla velutina cultured cells
Resumo:
Cell cultures of Mandevilla velutina have proved to be an interesting production system for biomass and secondary metabolites able to inhibit the hypotensive activity of bradykinin, a nonapeptide generated in plasma during tissue trauma. The crude ethyl acetate extract of cultured cells contains about 31- to 79-fold more potent anti-bradykinin compounds (e.g., velutinol A) than that obtained with equivalent extracts of tubers. Somaclonal variation may be an explanation for the wide range of inhibitor activity found in the cell cultures. The heterogeneity concerning morphology, differentiation, carbon dissimilation, and velutinol A production in M. velutina cell cultures is reported. Cell cultures showed an asynchronous growth and cells in distinct developmental stages. Meristematic cells were found as the major type, with several morphological variations. Cell aggregates consisting only of meristematic cells, differentiated cells containing specialized cell structures such as functional chloroplasts (cytodifferentiation) and cells with embryogenetic characteristics were observed. The time course for sucrose metabolism indicated cell populations with significant differences in growth and metabolic rates, with the highest biomass-producing cell line showing a cell cycle 60% shorter and a metabolic rate 33.6% higher than the control (F2 cell population). MALDI-TOF mass spectrometric analysis of velutinol A in selected cell lines demonstrated the existence of velutinol A producing and nonproducing somaclones. These results point to a high genetic heterogeneity in general and also in terms of secondary metabolite content.
Resumo:
Cells usually lose adhesion and increase proliferation and migration during malignant transformation. Here, we studied how proliferation can affect the other two characteristics, which ultimately lead to invasion and metastasis. We determined the expression of ß1 integrins, as well as adhesion and migration towards laminin-1, fibronectin, collagens type I and type IV presented by LISP-1 colorectal cancer cells exposed to 2.5% dimethyl sulfoxide (DMSO), an agent capable of decreasing proliferation in this poorly differentiated colorectal cell line. Untreated cells (control), as shown by flow cytometry and monoclonal antibodies, expressed alpha2 (63.8 ± 11.3% positive cells), alpha3 (93.3 ± 7.0%), alpha5 (50.4 ± 12.0%) and alpha6 (34.1 ± 4.9%) integrins but not alpha1, alpha4, alphav or ß4. Cells adhered well to laminin-1 (73.4 ± 6.0%) and fibronectin (40.0 ± 2.0%) substrates but very little to collagens. By using blocking monoclonal antibodies, we showed that alpha2, alpha3 and alpha6 mediated laminin-1 adhesion, but neither alpha3 nor alpha5 contributed to fibronectin adherence. DMSO arrested cells at G0/G1 (control: 55.0 ± 2.4% vs DMSO: 70.7 ± 2.5%) while simultaneously reducing alpha5 (24.2 ± 19%) and alpha6 (14.3 ± 10.8%) expression as well as c-myc mRNA (7-fold), the latter shown by Northern blotting. Although the adhesion rate did not change after exposure to DMSO, alpha3 and alpha5 played a major role in laminin-1 and fibronectin adhesion, respectively. Migration towards laminin-1, which was clearly increased upon exposure to DMSO (control: 6 ± 2 cells vs DMSO: 64 ± 6 cells), was blocked by an antibody against alpha6. We conclude that the effects of DMSO on LISP-1 proliferation were accompanied by concurrent changes in the expression and function of integrins, consequently modulating adhesion/migration, and revealing a complex interplay between function/expression and the proliferative state of cells.
Resumo:
The objective of the present study was to determine the effects of retinoic acid on the growth of the mouse mammary cells HC11 and HC11ras, which are a model for in vitro breast cancer progression. The expression of the two classes (RARs and RXRs) of retinoic acid receptor mRNAs was determined by Northern blot analysis. Receptor functional integrity was determined by testing whether RAR ß mRNA could be induced by retinoic acid. The effects of a 72-h exposure to 50 µM 13-cis retinoic acid on HC11 and HC11ras cell proliferation and HC11 cell differentiation were investigated by flow cytometric cell cycle analysis, and by determination of ß-casein mRNA expression, respectively. The possibility that retinoic acid would induce the expression of the vitamin D receptor and synergize with vitamin D, a known inhibitor of HC11 cell growth, was also investigated. HC11 cells expressed higher mRNA levels of both RAR a and RAR g when compared to HC11ras cells. In contrast, RAR ß, as well as RXR a, ß and g expression was low in both HC11 and HC11ras cells. In addition, RAR ß mRNA was induced by retinoic acid treatment in both cells. In spite of these observations, no effects were seen on cell proliferation or differentiation upon exposure to retinoic acid. Neither vitamin D receptor induction nor synergy with vitamin D on growth inhibition was observed. We conclude that the RAR expression profile could be related to the transformed state in HC11ras cells and that the retinoic acid resistance observed merits further investigation.
Resumo:
Although adrenocorticotropic hormone is generally considered to play a major role in the regulation of adrenal glucocorticoid secretion, several reports have suggested that other pituitary hormones (e.g., prolactin) also play a significant role in the regulation of adrenal function. The aim of the present study was to measure the adrenocortical cell area and to determine the effects of the transition from the prepubertal to the postpubertal period on the hyperprolactinemic state induced by domperidone (4.0 mg kg-1 day-1, sc). In hyperprolactinemic adult and young rats, the adrenals were heavier, as determined at necropsy, than in the respective controls: adults (30 days: 0.16 ± 0.008 and 0.11 ± 0.007; 46 days: 0.17 ± 0.006 and 0.12 ± 0.008, and 61 days: 0.17 ± 0.008 and 0.10 ± 0.004 mg for treated and control animals, respectively; P < 0.05), and young rats (30 days: 0.19 ± 0.003 and 0.16 ± 0.007, and 60 days: 0.16 ± 0.006 and 0.13 ± 0.009 mg; P < 0.05). We selected randomly a circular area in which we counted the nuclei of adrenocortical cells. The area of zona fasciculata cells was increased in hyperprolactinemic adult and young rats compared to controls: adults: (61 days: 524.90 ± 47.85 and 244.84 ± 9.03 µm² for treated and control animals, respectively; P < 0.05), and young rats: (15 days: 462.30 ± 16.24 and 414.28 ± 18.19; 60 days: 640.51 ± 12.91 and 480.24 ± 22.79 µm²; P < 0.05). Based on these data we conclude that the increase in adrenal weight observed in the hyperprolactinemic animals may be due to prolactin-induced adrenocortical cell hypertrophy.
Resumo:
Neuroblastoma, the most common extracranial tumor in childhood, has a wide spectrum of clinical and biological features. The loss of heterozygosity within the 9p21 region has been reported as a prognostic factor. Two tumor suppressor genes located in this region, the CDKN2B/p15 and CDKN2A/p16 (cyclin-dependent kinase inhibitors 2B and 2A, respectively) genes, play a critical role in cell cycle progression and are considered to be targets for tumor inactivation. We analyzed CDKN2B/p15 and CDKN2A/p16 gene alterations in 11 patients, who ranged in age from 4 months to 13 years (male/female ratio was 1.2:1). The most frequent stage of the tumor was stage IV (50%), followed by stages II and III (20%) and stage I (10%). The samples were submitted to the multiplex PCR technique for homozygous deletion analysis and to single-strand conformation polymorphism and nucleotide sequencing for mutation analysis. All exons of both genes were analyzed, but no deletion was detected. One sample exhibited shift mobility specific for exon 2 in the CDKN2B/p15 gene, not confirmed by DNA sequencing. Homozygous deletions and mutations are not involved in the inactivation mechanism of the CDKN2B/p15 and CDKN2A/p16 genes in neuroblastoma; however, these two abnormalities do not exclude other inactivation pathways. Recent evidence has shown that the expression of these genes is altered in this disease. Therefore, other mechanisms of inactivation, such as methylation of promoter region and unproperly function of proteins, may be considered in order to estimate the real contribution of these genes to neuroblastoma genesis or disease progression.
Resumo:
The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP) on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm) yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.
Resumo:
Extracellular matrix proteins and cell adhesion receptors (integrins) play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp) motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.
Resumo:
Piplartine {5,6-dihydro-1-[1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)pyridinone} and piperine {1-5-(1,3)-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]piperidine} are alkaloid amides isolated from Piper. Both have been reported to show cytotoxic activity towards several tumor cell lines. In the present study, the in vivo antitumor activity of these compounds was evaluated in 60 female Swiss mice (N = 10 per group) transplanted with Sarcoma 180. Histopathological and morphological analyses of the tumor and the organs, including liver, spleen, and kidney, were performed in order to evaluate the toxicological aspects of the treatment with these amides. Administration of piplartine or piperine (50 or 100 mg kg-1 day-1 intraperitoneally for 7 days starting 1 day after inoculation) inhibited solid tumor development in mice transplanted with Sarcoma 180 cells. The inhibition rates were 28.7 and 52.3% for piplartine and 55.1 and 56.8% for piperine, after 7 days of treatment, at the lower and higher doses, respectively. The antitumor activity of piplartine was related to inhibition of the tumor proliferation rate, as observed by reduction of Ki67 staining, a nuclear antigen associated with G1, S, G2, and M cell cycle phases, in tumors from treated animals. However, piperine did not inhibit cell proliferation as observed in Ki67 immunohistochemical analysis. Histopathological analysis of liver and kidney showed that both organs were reversibly affected by piplartine and piperine treatment, but in a different way. Piperine was more toxic to the liver, leading to ballooning degeneration of hepatocytes, accompanied by microvesicular steatosis in some areas, than piplartine which, in turn, was more toxic to the kidney, leading to discrete hydropic changes of the proximal tubular and glomerular epithelium and tubular hemorrhage in treated animals.