879 resultados para adipose
Resumo:
Cachexia is a wasting syndrome often associated with malignancy, characterised by alterations in host metabolism and significant catabolism of host adipose tissue and skeletal muscle. The MAC16 murine adenocarcinoma is profoundly cachexigenic, inducing host weight-loss at relatively small tumour burden without the induction of anorexia. A 4DkDa factor capable of inducing lipolysis in vitro via an activation of adenylate cyclase (AC) has been isolated from the MAC16 tumour, and the urine of cachectic cancer patients, using a series of ion exchange and gel exclusion chromatography procedures. This lipid-mobilising factor (LMF) has been demonstrated to stimulate lipolysis in adipocytes dose-dependently via a signal transduction pathway involving, possibly, β3-adrenoceptors. Oral administration of the n-3 polyunsaturated fatty acid (PUFA) eicosapentaenoic acid (EPA) attenuated the progression of cachexia, but not the production of LMF, in MAC16 tumour-bearing mice, and was significantly incorporated into plasma phospholipids, skeletal muscle and adipose tissue. EPA supplemented cancer patients also demonstrated significantly increased plasma EPA concentrations. Decreased plasma membrane AC activity in response to LMF was observed in adipocytes isolated from mice receiving EPA. Incubation in vitro of adipocytes, or plasma membranes, with PUFAs significantly altered membrane fatty acid composition and attenuated the induction of both lipolysis, and AC activity, by LMF. The inhibitory actions of EPA, but not docosahexaenoic acid, are probably the consequence of an interaction with guanine nucleotide binding proteins (G-proteins). Progression of the cachectic state induced an up-regulation of adipocyte membrane expression of stimulatory G-proteins, allied with a concomitant down-regulation of inhibitory G-proteins, thus facilitating the catabolic actions of LMF, implying some tumour-mediated effect. A reversal of such alterations was observed upon oral administration of EPA, suggesting that the primary mechanism of action of this fatty acid is an inhibition of the end organ effects of LMF.
Resumo:
Cachexia is characterised by a progressive weight loss due to depletion of both skeletal muscle and adipose tissue. The loss of adipose tissue is due to the production of a tumour-derived lipid mobilising factor (LMF), which has been shown to directly induce lipolysis in isolated epididymal murine white adipocytes. The administration of LMF to a non-tumour bearing mice produced a rapid weight loss, with a specific reduction in carcass lipid with also some redistribution of lipid with the accumulation of lipid in the liver. There was also up-regulation of uncoupling protein-1 and -2 mRNA and protein expression in brown adipose tissue, suggesting that an adaptive process occurs due to increased energy mobilisation. There was also up-regulation of UCP-2 in the livers of LMF treated mice, suggesting a protective mechanism to the build up of lipid in the livers, which would produce free radical by-products. LMF was also shown to stimulate cyclic AMP production in CHO-K1 cells transfected with human -3 adrenergic receptors and inhibited by the -β3 antagonist SR59230A. LMF binding was also inhibited by SR59230A in isolated receptors. This suggests that LMF mediates its effects through a β3 adrenergic receptor. There were also changes in glucose and fatty acid uptake in LMF treated mice, which suggests metabolic changes are occurring. The study suggests that a tumour derived lipolytic factor acts through the 3 adrenoceptor producing effects on lipid mobilisation, energy expenditure and glucose metabolism.
Resumo:
Cancer cachexia comprises unintentional and debilitating weight loss associated with certain tumour types. Fat loss in cachexia is mediated by a 43kDa Lipid Mobilising Factor (LMF) sharing homology with endogenous Zinc-α2-Glycoprotein (ZAG). LMF and ZAG induced significant lipolysis in isolated epidydimal adipose tissue. This is attenuated by co-incubation with 10μM of antagonist SR59230A and partially attenuated by 25μM PD098059 (indicating β3-AR and MAPK involvement respectively). LMF/ZAG induced in vitro lipid depletion in differentiated 3T3-L1 adipocytes that seen to comprise a significant increase in lipolysis (p<0.01), with only a modest decrease in lipid synthesis (p=0.09). ZAG significantly increased in vitro protein synthesis (p<0.01) in C2C12 myotubes (without an effect on protein degradation). This increase was activated at transcription and attenuated by co-incubation with 10μM SR59230A. Proteolytic digestion of ZAG and LMF followed by sephadex G50 chromatography yielded active fragments of 6-15kDa, indication the entire molecule was not required for bioactivity. Cachexigenic MAC16 cells demonstrated significant in vitro ZAG expression over non-cachexigenic MAC13 cells (p<0.001). WAT and BAT excised from MAC16 mice of varying weight loss demonstrated increased ZAG expression compared to controls. Dosing of NMRI mice with s/c ZAG failed to reproduce this up-regulation, thus another cachectic factor is responsible. 0.58nM LMF conferred significant protection against hydrogen peroxide, paraquat and bleomycin-induced oxidative stress in the non-cachexigenic MAC13 cell line. This protection was attenuated by 10μM SR59230A indicating a β3-AR mediated effect. In addition, 0.58nM LMF significantly up regulated UCP2 expression (p<0.001), (a mitochondrial protein implicated in the detoxification of ROS) implying this to be the mechanism by which survival was achieved. In vitro, LMF caused significant up-regulation of UCP1 in BAT and UCP2 and 3 in C2C12 myotubes. This increase in uncoupling protein expression further potentiates the negative energy balance and wasting observed in cachexia.
Resumo:
Cancer cachexia encompases severe weight loss, characterised by the debilitating atrophy of adipose and skeletal muscle mass. Skeletal muscle proteolysis in cancer cachexia is mediated by a sulphated glycoprotein with a relative molecular mass of 24kDa, termed Proteolysis-Inducing Factor (PIF). PIF induced a significant increase in protein degradation, peaking at 4.2nM PIF (p<0.001), ‘chymotrypsin-like’ activity of the proteasome (p<0.001) and increased expression of components of the ATP-ubiquitin dependent proteolytic pathway. This was attenuated in vitro by pre-incubation with the PKC inhibitor calphostin C (100µM) and NF-kB the inhibitors SN50 (18µM), curcumin (50µM) and resveratrol (30µM), 2 hours prior to the addition of PIF. In vivo studies found the IKK inhibitor resveratrol (1mg/kg) to be successful in attenuating protein degradation (p<0.001) and upregulation of ubiquitin-dependent proteolysis in MAC16 tumour bearing mice. C2C12 myoblasts transfected with mutant IkBα and PKCα inserts did not elicit a PIF-induced response, suggesting the importance of the transcription factor NF-kB and PKC involvement in PIF signal transduction. 15(S)-HETE acts as an intracellular mediator of PIF and exerts an effect through the activation of PKC and subsequently IKK, which phosphorylates IkBα and allows NF-kB to migrate to the nucleus. This effect was negated with the PKC inhibitor calphostin C (300nM). A commercially produced PIF receptor antibody was raised in rabbits immunised with a peptide containing the partial N-terminal sequence of the PIF receptor. The PIF receptor antibody was successful in attenuating the PIF-induced increase in skeletal muscle catabolism and protein degradation in vitro at 10µg/ml (p<0.001) and 3.47mg/kg in vivo (p<0.001). The data suggest great potential in the development of this antibody as a therapy against cancer cachexia.
Resumo:
Cachexia in cancer is characterised by progressive depletion of both adipose tissue stores and skeletal muscle mass. Two catabolic factors produced by cachexia-inducing tumours have the potential for inducing these changes in body composition: (i) proteolysis-inducing factor (PIF) which acts on skeletal muscle to induce both protein degradation and inhibit protein synthesis, (ii) lipid-mobilising factor (LMF), which has been shown to directly induce lipolysis in isolated epididymal murine white adipocytes. Administration of lipid-mobilising factor (LMF) to mice produced a specific reduction in carcass lipid with a tendency to increase non-fat carcass mass. Treatment of murine myoblasts, myotubes and tumour cells with tumour-produced LMF, caused concentration dependent stimulation of protein synthesis, within a 24hr period. It produced an increase in intracellular cyclic AMP levels, which was linearly related to the increase in protein synthesis. The observed effect was attenuated by pretreating cells with the adenylate cyclase inhibitor, MDL12330A and was additive with stimulation produced by forskolin. Both propranolol and a specific 3 adrenergic antagonist SR59230A, significantly reduced the stimulation of protein synthesis induced by LMF. LMF also affected protein degradation in vitro, as demonstrated by a reduction in proteasome activity, a key component of the ubiquitin-dependent proteolytic pathway. These effects were opposite to those produced by PIF which caused both a decrease in the rate of protein synthesis and an elevation on protein breakdown when incubated in vitro.Incubation of LMF with a fat cell line produced alterations in the levels of guanine-nucleotide binding proteins (G proteins). This was also evident in adipocyte plasma membranes isolated from mice bearing the tumour model of cachexia, MAC16 adenocarcinoma and from patients with cancer cachexia. Progression through the cachectic state induced an upregulation of stimulatory G proteins paralleled with a downregulation of inhibitory G proteins. These changes would contribute to the increased lipid mobilisation seen in cancer cachexia.
Resumo:
A transplantable colon adenocarcinoma of the mouse (MAC16) was utilized as a model of human cancer cachexia. The MAC16 tumour produced extensive weight loss in the host at small tumour burdens and without a reduction in either food or fluid intake. The weight loss was characterised by a decrease in both carcass fat and muscle mass which were directly proportional to the weight of the tumour. The weight loss has been correlated with the production of circulatory catabolic factors by the tumour, which degrade host muscle and adipose tissue in vitro. These factors were further characterised and have been shown to be distinct and separable by gel exclusion chromatography. The proteolytic factors (molecular weight > 150k daltons) were distinguishable from the lipolytic factors which appeared related with molecular weights of approximately 3.0, 1.5 and 0.7k daltons. Lipolytic factors of the same molecular weights were identified in other tumour models and in the body fluids of tumour-bearing animals and cancer patients. These factors were not present in healthy individuals or in patients with other weight-losing conditions. Various temperatures studied reversed the weight loss seen in the cachexia induced by the MAC16 adenocarcinoma in vivo. The effects of these treatments could be linked in vitro to the inhibition of the catabolic factors produced by the tumour. These results suggest that these factors may be responsible for the cachexia the tumour confers on its host. These factors may be useful in the understanding and therapy of cancer cachexia.
Resumo:
The effect of cancer cachexia on host metabolism has been studied in mice transplanted with either the MAC16 adenocarcinoma which induces profound loss of host body weight and depletion of lipid stores or, the MAC13 adenocarcinoma which is of the same histological type, but which grows without an effect on host body weight. Oxidation of D-[U-14C]glucose was elevated in both tumour-bearing states irrespective of cachexia, when compared with non tumour-bearing controls. Both the MAC16 and MAC13 tumours in vivo utilised glucose at the expense of the brain, where its use was partially replaced by 3-hydroxybutyrate, a ketone body. Oxidation of both [U-14C]palmitic acid and [1-14C]triolein was significantly increased in MAC16 tumour-bearing animals and decreased in MAC13 tumour-bearing animals when compared with non tumour-bearing controls, suggesting that in cachectic tumour-bearing animals, mobilisation of body lipids is accompanied by an increased utilisation by the host. Weight loss in MAC16 tumour-bearing animals is associated with the production of a lipolytic factor. Injection of this partially purified lipolytic factor induced weight loss in recipient animals which could be maintained over time in tumour-bearing animals. This suggests that the tumour acts as a sink for the free fatty acids liberated as a result of the mobilisatation of adipose stores. Lipids are important as an energy source in cachectic animals because of their high calorific value and because glucose is being diverted away from host tissues to support tumour growth. Their importance is further demonstrated by the evidence of a MAC16 tumour-associated lipolytic factor. This lipolytic factor is the key to understanding the alterations in host metabolism that occur in tumour-induced cachexia, and may provide future alternatives for the reversal of cachexia and the treatment of cancer itself.
Resumo:
Obesity has become a global epidemic. Approximately 15% of the world population is either overweight or obese. This figure rises to 75% in many westernised countries including the United Kingdom. Health costs in the UK to treat obesity and associated disease are conservatively estimated at 6% of the National Health Service (NHS) budget equating to 3.33 billion Euros. Excess adiposity, especially in visceral depots, increases the risk of type 2 diabetes, cardiovascular disease, gall stones, hypertension and cancer. Type 2 diabetes mellitus accounts for >90% of all cases of diabetes of which the majority can be attributed to increased adiposity, and approximately 70% of cardiovascular disease has been attributed to obesity in the US. Weight loss reduces risk of these complications and in some cases can eliminate the condition. However, weight loss by conventional non-medicated methods is often unsuccessful or promptly followed by weight regain. This thesis has investigated adipocytes development and adipokine signalling with a view to enhance the understanding of tissue functionality and to identify possible targets or pathways for therapeutic intervention. Adipocyte isolation from human tissue samples was undertaken for these investigative studies, and the methodology was optimised. The resulting isolates of pre-adipocytes and mature adipocytes were characterised and evaluated. Major findings from these studies indicate that mature adipocytes undergo cell division post terminal differentiation. Gene studies indicated that subcutaneous adipose tissue exuded greater concentrations and fluctuations of adipokine levels than visceral adipose tissue, indicating an important adiposensing role of subcutaneous adipose tissue. It was subsequently postulated that the subcutaneous depot may provide the major focus for control of overall energy balance and by extension weight control. One potential therapeutic target, 11ß-hydrosteroid dehydrogenase (11ß-HSD1) was investigated, and prospective inhibitors of its action were considered (BVT1, BVT2 and AZ121). Selective reduction of adiposity of the visceral depot was desired due to its correlation with the detrimental effects of obesity. However, studies indicated that although the visceral depot tissue was not unaffected, the subcutaneous depot was more susceptible to therapeutic inhibition by these compounds. This was determined to be a potentially valuable therapeutic intervention in light of previous postulations regarding long-term energy control via the subcutaneous tissue depot.
Resumo:
OBJECTIVE: To investigate the mechanism of the lipid depletion by zinc-a(2)-glycoprotein (ZAG). DESIGN: Studies were conducted in the ob/ob mouse, or on isolated adipocytes from these animals or their lean counterparts. RESULTS: Treatment of these animals for 15 days with ZAG (100? µg, intravenously, daily) resulted in a reduction of body weight of 6.55? g compared with phosphate-buffered saline-treated controls, without a change in food or water intake, but with a 0.4?°C rise in rectal temperature. ZAG-treated mice had a 30% reduction in carcass fat mass and a twofold increase in weight of brown adipose tissue. Epididymal adipocytes from ZAG-treated mice showed an increased expression of ZAG and hormone-sensitive lipase (HSL), and this was maintained for a further 3 days in the absence of ZAG. There was an increased lipolytic response to isoproterenol, which was retained for 3 days in vitro in the absence of ZAG. Expression of HSL was also increased in subcutaneous and visceral adipose tissue, as was also adipose triglyceride lipase (ATGL). There was a rapid loss of labelled lipid from epididymal adipose tissue of ZAG-treated mice, but not from the other depots, reflecting the difference in sensitivity to lipolytic stimuli. The increased expression of HSL and ATGL may involve the extracellular signal-regulated kinase (ERK) pathway, as the active (phospho) form was upregulated in all adipose depots after ZAG administration, whereas in vitro studies showed induction of HSL and ATGL by ZAG to be attenuated by PD98059, an inhibitor of the ERK pathway. CONCLUSION: These results suggest that ZAG not only induces direct lipolysis, but also sensitizes adipose tissue to other lipolytic stimuli.