962 resultados para action potential
Resumo:
In Australia, fungi associated with larvae of the biological control agent Cactoblastis cactorum may contribute to the control of the exotic weed pricklypear (Opuntia inermis), C, cactorum larvae were assessed for their ability to vector pathogenic fungi into O, inermis by the infestation of larvae with fungal suspensions. Six fungal isolates caused disease after being carried into the host on external surfaces of larvae, and propagules of one isolate (UQ5109) initiated disease after being transferred from the cladode epidermis into the host by larvae feeding on the plant. Scanning electron microscopy revealed extensive hyphal growth on the external surfaces of larvae infested with several of the isolates. Fungi isolated from field-grown O, inermis cladodes were tested for pathogenicity to this plant in an in vivo plant assay. In total, 152 isolates were screened, 22 of which infected the host in pathogenicity tests. Only 1 (UQ5115) infected undamaged host tissue, whereas the remainder required the host to be wounded before infection could proceed. The majority of isolates were only weakly pathogenic, even when inoculated via wounds, suggesting that most were either saprophytes or weak parasites. This study demonstrates that it is possible for larvae of C, cactorum to transmit fungal pathogens into O, inermis tissue and it has provided a sound basis for future field work to determine the contribution that fungi make to the control of O. inermis, (C) 2001 Academic Press.
Resumo:
Soil carbon is a major component of the terrestrial carbon cycle. The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Consequently, soils are a major reservoir of carbon and an important sink. Because of the relatively long period of time that carbon spends within the soil and is thereby withheld from the atmosphere, it is often referred to as being sequestered. Increasing the capacity of soils to sequester C provides a partial, medium-term countermeasure to help ameliorate the increasing CO2 levels in the atmosphere arising from fossil fuel burning and land clearing. Such action will also help to alleviate the environmental impacts arising from increasing levels of atmospheric CO2. The C sequestration potential of any soil depends on its capacity to store resistant plant components in the medium term and to protect and accumulate the humic substances (HS) formed from the transformations or organic materials in the soil environment. The sequestration potential of a soil depends on the vegetation it supports, its mineralogical composition, the depth of the solum, soil drainage, the availability of water and air, and the temperature of the soil environment. The sequestration potential also depends on the chemical characteristics of the soil organic matter and its ability to resist microbial decomposition. When accurate information for these features is incorporated in model systems, the potentials of different soils to sequester C can be reliably predicted. It is encouraging to know that improved soil and crop management systems now allow field yields to be maintained and soil C reserves to be increased, even for soils with depleted levels of soil C. Estimates of the soil C sequestration potential are discussed. Inevitably HS are the major components of the additionally sequestered C. It will be important to know more about the compositions and associations of these substances in the soil if we are able to predict reasonably accurately the ability of any soil type to sequester C in different cropping and soil management systems.
Resumo:
Application of novel analytical and investigative methods such as fluorescence in situ hybridization, confocal laser scanning microscopy (CLSM), microelectrodes and advanced numerical simulation has led to new insights into micro-and macroscopic processes in bioreactors. However, the question is still open whether or not these new findings and the subsequent gain of knowledge are of significant practical relevance and if so, where and how. To find suitable answers it is necessary for engineers to know what can be expected by applying these modern analytical tools. Similarly, scientists could benefit significantly from an intensive dialogue with engineers in order to find out about practical problems and conditions existing in wastewater treatment systems. In this paper, an attempt is made to help bridge the gap between science and engineering in biological wastewater treatment. We provide an overview of recently developed methods in microbiology and in mathematical modeling and numerical simulation. A questionnaire is presented which may help generate a platform from which further technical and scientific developments can be accomplished. Both the paper and the questionnaire are aimed at encouraging scientists and engineers to enter into an intensive, mutually beneficial dialogue. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Background. Posttransplant lymphoproliferative disease (PTLD), driven by the presence of Epstein-Barr virus (EBV), is becoming an increasingly important clinical problem after solid organ transplantation. The use of immunosuppressive therapy leads to the inhibition of the cytotoxic T cells that normally control the EBV latently infected B cells. The prognosis for many patients with PTLD is poor, and the optimal treatment strategy is not well defined. Method. This study investigates the use of a histone deacetylase inhibitor, azelaic bishydroxamic acid (ABRA), for its ability to effectively kill EBV-transformed lymphoblastoid cell lines. Results. In vitro treatment of lymphoblastoid cell lines with ABRA showed that they were effectively killed by low doses of the drug (ID50 2-5 mug/ml) within 48 hr. As well as being effective against polyclonal B-cell lines, ABHA was also shown to be toxic to seven of eight clonal Burkitt's lymphoma cell lines, indicating that the drug may also be useful in the treatment of late-occurring clonal PTLD. In addition, ABHA treatment did not induce EBV replication or affect EBV latent gene expression. Conclusion. These studies suggest that ABHA effectively kills both polyclonal and clonal B-cell lines and has potential in the treatment of PTLD.
Resumo:
This paper presents the results of my action research. I was involved in establishing and running a digital library that was founded by the government of South Korea. The process involved understanding the relationship between the national IT infrastructure and the success factors of the digital library. In building, the national IT infrastructure, a digital library system was implemented; it combines all existing digitized university libraries and can provide overseas information, such as foreign journal articles, instantly and freely to every Korean researcher. An empirical survey was made as a part of the action research; the survey determined user satisfaction in the newly established national digital library. After obtaining the survey results, I suggested that the current way of running the nationwide government-owned digital library should be retained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Hookworms routinely reach the gut of nonpermissive hosts but fail to successfully feed, develop, and reproduce. To investigate the effects of host-parasite coevolution on the ability of hookworms to feed in nonpermissive hosts, we cloned and expressed aspartic proteases from canine and human hookworms. We show here that a cathepsin D-like protease from the canine hookworm Ancylosotoma caninum (Ac-APR-1) and the orthologous protease from the human hookworm Necator americanus (Na-APR-1) are expressed in the gut and probably exert their proteolytic activity extracellularly. Both proteases were detected immunologically and enzymatically in somatic extracts of adult worms. The two proteases were expressed in baculovirus, and both cleaved human and dog hemoglobin (Hb) in vitro. Each protease digested Hb from its permissive host between twofold (whole molecule) and sixfold (synthetic peptides) more efficiently than Hb from the nonpermissive host, despite the two proteases' having identical residues lining their active site clefts. Furthermore, both proteases cleaved Hb at numerous distinct sites and showed different substrate preferences. The findings suggest that the paradigm of matching the molecular structure of the food source within a host to the molecular structure of the catabolic proteases of the parasite is an important contributing factor for host-parasite compatibility and host species range.
Resumo:
The mating behavior of the quasi-gregarious egg parasitoid Trissolcus basalis (Wollaston) was investigated under field conditions. Trissolcus basalis has female-biased sex ratios and is a protandrous species, with males emerging 1-2 days before females. Males competed aggressively for control of the egg mass, with one male assuming dominance and control of the egg mass, although changes in dominance occurred at least once on each egg mass observed. Typical mating behavior involved the dominant male mating his sisters immediately upon their emergence from the egg mass. These behaviors are characteristic of an inbreeding species that manifests local mate competition. However, several aspects of the mating behavior of T. basalis are inconsistent with that of an inbreeding species. Over 18% of emerging females were not mated by the dominant male upon emergence, 13% of females were not observed to be mated at all and may have left their natal site as virgins, 25% of females were mated multiple times and sometimes by multiple males, females remained near the natal site for up to several hours after emergence before emigrating, and males dispersed away from the natal site during female emergence. Trissolcus basalis may be a predominantly inbreeding species but its emergence and mating behavior suggest that low-frequency outbreeding is also likely to occur.
Resumo:
Objective : To establish the CO2 dispersion and retention properties of some mattresses and bed coverings commercially available in Australia. Methods : Five mattresses were studied in (i) an in vivo model in which an infant's head was covered by a headbox, rebreathing was allowed to occur, and the final steady state CO2 concentration was measured; and (ii) an in vitro model in which 5% CO2 in a headbox was allowed to disperse, and the time taken for the concentration to reach 1% was measured. Five types of bedcover were studied in (i) an in vivo model in which an infant's head was covered by a bedcover and the final steady state CO2 concentration was measured; and (ii) an in vitro model in which 5% CO2 under a bedcover was allowed to disperse, and the time taken for the concentration to reach 1% was measured. Results : The steady state CO2 concentrations ranged from 0.6% to 3.0% for the mattresses (P < 0.05). The time for CO2 to disperse ranged from 5.5 min to 30.4 min (P < 0.05). Steady state CO2 concentrations ranged from 2.5% to 3.6% for the bedcoverings (P > 0.05). The time for CO2 to disperse ranged from 5.4 min to 7.7 min (P > 0.05). Conclusions : Some commercial cot mattresses and bedcoverings allow high concentrations of CO2 to accumulate in rebreathing environments. Some mattress types studied were more diffusive to CO2 , whereas there was no difference between the bedcovers studied. This may have implications for vulnerable infants at risk of sudden infant death syndrome.
Resumo:
A method based on isothermal calorimetry is described for the direct kinetic assay of pyruvate kinase. In agreement with earlier findings based on the standard coupled assay system for this enzyme in the presence of a fixed ADP concentration, the essentially rectangular hyperbolic dependence of initial velocity upon phosphoenolpyruvate concentration is rendered sigmoidal by the allosteric inhibitor phenylalanine. This effect of phenylalanine can be countered by including a high concentration of a space- filling osmolyte such as proline in the reaction mixtures. This investigation thus affords a dramatic example that illustrates the need to consider potential consequences of thermodynamic nonideality on the kinetics of enzyme reactions in crowded molecular environments such as the cell cytoplasm.