874 resultados para abnormalities, developmental
Resumo:
We present a general method for rigorously identifying correlations between variations in large-scale molecular profiles and outcomes and apply it to chromosomal comparative genomic hybridization data from a set of 52 breast tumors. We identify two loci where copy number abnormalities are correlated with poor survival outcome (gain at 8q24 and loss at 9q13). We also identify a relationship between abnormalities at two loci and the mutational status of p53. Gain at 8q24 and loss at 5q15-5q21 are linked with mutant p53. The 9q and 5q losses suggest the possibility of gene products involved in breast cancer progression. The analytical techniques are general and also are applicable to the analysis of array-based expression data.
Resumo:
IN adult mice, the dominant adhesion molecules involved in homing to lymph nodes are L-selectin homing receptors on lymphocytes and the peripheral lymph node addressins on specialized high endothelial venules. Here we show that, from fetal life through the first 24 hr of life, the dominant adhesion molecules are the mucosal addressin MAdCAM-1 on lymph node high endothelial venules and its counterreceptor, the Peyer's patch homing receptor, integrin alpha 4 beta 7 on circulating cells. Before birth, 40-70% of peripheral blood leukocytes are L-selectin-positive, while only 1-2% expresses alpha 4 beta 7. However, the fetal lymph nodes preferentially attract alpha 4 beta 7-expressing cells, and this can be blocked by fetal administration of anti-MAdCAM-1 antibodies. During fetal and early neonatal life, when only MAdCAM-1 is expressed on high endothelial venules, an unusual subset of CD4 + CD3- cells, exclusively expressing alpha 4 beta 7 as homing receptors, enters the lymph nodes. Beginning 24 hr after birth a developmental switch occurs, and the peripheral node addressins are upregulated on high endothelial venules in peripheral and mesenteric lymph nodes. This switch in addressin expression facilitates tissue-selective lymphocyte migration and mediates a sequential entry of different cell populations into the lymph nodes.
Resumo:
Histone H1, a major structural component of chromatin fiber, is believed to act as a general repressor of transcription. To investigate in vivo the role of this protein in transcription regulation during development of a multicellular organism, we made transgenic tobacco plants that overexpress the gene for Arabidopsis histone H1. In all plants that overexpressed H1 the total H1-to-DNA ratio in chromatin increased 2.3-2.8 times compared with the physiological level. This was accompanied by 50-100% decrease of native tobacco H1. The phenotypic changes in H1-overexpressing plants ranged from mild to severe perturbations in morphological appearance and flowering. No correlation was observed between the extent of phenotypic change and the variation in the amount of overexpressed H1 or the presence or absence of the native tobacco H1. However, the severe phenotypic changes were correlated with early occurrence during plant growth of cells with abnormally heterochromatinized nuclei. Such cells occurred considerably later in plants with milder changes. Surprisingly, the ability of cells with highly heterochromatinized nuclei to fulfill basic physiological functions, including differentiation, was not markedly hampered. The results support the suggestion that chromatin structural changes dependent on H1 stoichiometry and on the profile of major H1 variants have limited regulatory effect on the activity of genes that control basal cellular functions. However, the H1-mediated chromatin changes can be of much greater importance for the regulation of genes involved in control of specific developmental programs.
Resumo:
The essential eukaryotic pre-mRNA splicing factor U2AF (U2 small nuclear ribonucleoprotein auxiliary factor) is required to specify the 3' splice at an early step in spliceosome assembly. U2AF binds site-specifically to the intron polypyrimidine tract and recruits U2 small nuclear ribonucleoprotein to the branch site. Human U2AF (hU2AF) is a heterodimer composed of a large (hU2AF65) and small (hU2AF35) subunit. Although these proteins associate in a tight complex, the biochemical requirement for U2AF activity can be satisfied solely by the large subunit. The requirement for the small subunit in splicing has remained enigmatic. No biochemical activity has been found for hU2AF35 and it has been implicated in splicing only indirectly by its interaction with known splicing factors. In the absence of a biochemical assay, we have taken a genetic approach to investigate the function of the small subunit in the fruit fly Drosophila melanogaster. A cDNA clone encoding the small subunit of Drosophila U2AF (dU2AF38) has been isolated and sequenced. The dU2AF38 protein is highly homologous to hU2AF35 containing a conserved central arginine- and serine-rich (RS) domain. A recessive P-element insertion mutation affecting dU2AF38 causes a reduction in viability and fertility and morphological bristle defects. Consistent with a general role in splicing, a null allele of dU2AF38 is fully penetrant recessive lethal, like null alleles of the Drosophila U2AF large subunit.