928 resultados para Zinc-oxide nanostructures
Resumo:
GABAB receptors regulate the intracellular Ca2+ concentration ([Ca2+]i) in a number of cells (e.g., retina, airway epithelium and smooth muscle), but whether they are expressed in vascular endothelial cells and similarly regulate the [Ca2+]i is not known. The purpose of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter γ-aminobutyric acid (GABA), in cultured human aortic endothelial cells (HAECs), and to explore if altering receptor activation modified [Ca2+]i and endothelial nitric oxide synthase (eNOS) translocation. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABAB1 and GABAB2 in cultured HAECs. The effects of GABAB receptors on [Ca2+]i in cultured HAECs were demonstrated using fluo-3. The influence of GABAB receptors on eNOS translocation was assessed by immunocytochemistry. Both GABAB1 and GABAB2 mRNA and protein were expressed in cultured HAECs, and the GABAB1 and GABAB2 proteins were colocated in the cell membrane and cytoplasm. One hundred μM baclofen caused a transient increase of [Ca2+]i and eNOS translocation in cultured HAECs, and the effects were attenuated by pretreatment with the selective GABAB receptor antagonists CGP46381 and CGP55845. GABAB receptors are expressed in HAECs and regulate the [Ca2+]i and eNOS translocation. Cultures of HAECs may be a useful in vitro model for the study of GABAB receptors and vascular biology.
Resumo:
We demonstrate potential applications for unusual dendrite like Au–Ag alloy nanoparticles formed via a galvanic replacement reaction in the ionic liquid [BMIM][BF4]. In comparison to Au–Ag alloy nanoshells synthesised via a similar reaction in water, the unusual branched structure of the dendritic materials led to increased electrocatalytic activity for the oxidation of both formaldehyde and hydrazine, and increased sensitivity and spectral resolution for the surface enhanced Raman scattering (SERS) of 4,4-bipyridal.
Resumo:
Tunable charge-trapping behaviors including unipolar charge trapping of one type of charge carrier and ambipolar trapping of both electrons and holes in a complementary manner is highly desirable for low power consumption multibit flash memory design. Here, we adopt a strategy of tuning the Fermi level of reduced graphene oxide (rGO) through self-assembled monolayer (SAM) functionalization and form p-type and n-type doped rGO with a wide range of manipulation on work function. The functionalized rGO can act as charge-trapping layer in ambipolar flash memories, and a dramatic transition of charging behavior from unipolar trapping of electrons to ambipolar trapping and eventually to unipolar trapping of holes was achieved. Adjustable hole/electron injection barriers induce controllable Vth shift in the memory transistor after programming operation. Finally, we transfer the ambipolar memory on flexible substrates and study their charge-trapping properties at various bending cycles. The SAM-functionalized rGO can be a promising candidate for next-generation nonvolatile memories.
Resumo:
Solvothermally synthesized Ga2O3 nanoparticles are incorporated into liquid metal/metal oxide (LM/MO) frameworks in order to form enhanced photocatalytic systems. The LM/MO frameworks, both with and without incorporated Ga2O3 nanoparticles, show photocatalytic activitydue to a plasmonic effect where performance is related to the loading of Ga2O3 nanoparticles. Optimum photocatalytic efficiency is obtained with 1 wt% incorporation of Ga2O3 nanoparticles. This can be attributed to the sub-bandgap states of LM/MO frameworks, contributing to pseudo-ohmic contacts which reduce the free carrier injection barrier to Ga2O3.
Resumo:
The collisions between colloidal metal nanoparticles and a carbon electrode were explored as a dynamic method for the electrodeposition of a diverse range of electrocatalytically active Ag and Au nanostructures whose morphology is dominated by the electrostatic interaction between the charge of the nanoparticle and metal salt.
Resumo:
This is the first study to investigate alternative fertilisation strategies to increase cereal production while reducing greenhouse gas emissions from the most common soil type in subtropical regions. The results of this research will contribute to define future farming practices to achieve global food security and mitigate climate change. The study established that introducing legumes in cropping systems is the most agronomically viable and environmentally sustainable fertilisation strategy. Importantly, this strategy can be widely adopted in subtropical regions since it is economically accessible, requires little know-how transfer and technology investment, and can be profitable in both low- and high-input cropping systems.
Resumo:
Recently, studies have identified high zinc levels in various environmental resources, and excessive intake of zinc has long been considered to be harmful to human health. The aim of this research was to investigate the effectiveness of tricalcium aluminate (C3A) as a removal agent of zinc from aqueous solution. Inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been used to characterize such removal behavior. The effects of various factors such as pH influence, temperature and contact time were investigated. The adsorption capacity of C3A for Zn2+ was computed to be up to 13.73 mmol g−1, and the highest zinc removal capacity was obtained when the initial pH of Zn(NO3)2 solution was between 6.0 and 7.0, with temperature around 308 K. The XRD analysis showed that the resultant products were ZnAl-LDHs. Combined with the analysis of solution component, it was proved the existence of both precipitation and cation exchange in the removal process. From the experimental results, it was clear that C3A could be potentially used as a cost-effective material for the removal of zinc in aqueous environment.
Resumo:
Graphene oxide (GO) has attracted much interest for applications in bone tissue engineering; however, until now the interaction between GO and stem cells, and the in vivo bone-forming ability of GO has not been explored. The aim of this study was to produce a GO-modified β-tricalcium phosphate (β-TCP-GRA) biceramics and then explore the material’s osteogenic capacity in vitro and in vivo, as well as unravel some of the molecular mechanisms behind this. β-TCP-GRA disks and scaffolds were successfully prepared by a simple GO/water suspension soaking method in combination with heat treatment. These scaffolds were found to significantly enhance the proliferation, alkaline phosphatase activity and osteogenic gene expression of human bone marrow stromal cells (hBMSCs), when compared to β-TCP without GO modification (controls). Activation of the Wnt/β-catenin signaling pathway in hBMSCs appears to be the mechanism behind this osteogenic induction by β-TCP-GRA. β-TCP-GRA scaffolds led to an increased rate of in vivo new bone formation compared to β-TCP controls, indicative of the stimulatory effect of GO on in vivo osteogenesis, making GO modification of β-TCP a very promising method for applications in bone tissue engineering, in particular for the regeneration of large bone defects.
Resumo:
By taking the advantage of the excellent mechanical properties and high specific surface area of graphene oxide (GO) sheets, we develop a simple and effective strategy to improve the interlaminar mechanical properties of carbon fiber reinforced plastic (CFRP) laminates. With the incorporation of graphene oxide reinforced epoxy interleaf into the interface of CFRP laminates, the Mode-I fracture toughness and resistance were greatly increased. The experimental results of double cantilever beam (DCB) tests demonstrated that, with 2 g/m2 addition of GO, the Mode-I fracture toughness and resistance of the specimen increase by 170.8% and 108.0%, respectively, compared to those of the plain specimen. The improvement mechanisms were investigated by the observation of fracture surface with scanning electron microscopies. Moreover, finite element analyses were performed based on the cohesive zone model to verify the experimental fracture toughness and to predict the interfacial tensile strength of CFRP laminates.
Resumo:
Graphene has emerged as one of the most exciting materials of the 21st century due to its unique properties which have demonstrated great potential for applications in energy storage, flexible electronics and multifunctional composites. This thesis has established a new technique for investigating the structure-property relationship of graphene-polymer nanocomposites at micro and nanoscales. The outcomes can help gain a fundamental understanding of the toughening mechanism in these novel nanocomposites and benefit the development of broad graphene based materials and devices.
Resumo:
The influence of graphene oxide (GO) and its surface oxidized debris (OD) on the cure chemistry of an amine cured epoxy resin has been investigated by Fourier Transform Infrared Emission Spectroscopy (FT-IES) and Differential Scanning Calorimetry (DSC). Spectral analysis of IR radiation emitted at the cure temperature from thin films of diglycidyl ether of bisphenol A epoxy resin (DGEBA) and 4,4'-diaminodiphenylmethane (DDM) curing agent with and without GO allowed the cure kinetics of the interphase between the bulk resin and GO to be monitored in real time, by measuring both the consumption of primary (1°) amine and epoxy groups, formation of ether groups as well as computing the profiles for formation of secondary (2°) and tertiary (3°) amines. OD was isolated from as-produced GO (aGO) by a simple autoclave method to give OD-free autoclaved GO (acGO). It has been found that the presence of OD on the GO prevents active sites on GO surfaces fully catalysing and participating in the reaction of DGEBA with DDM, which results in slower reaction and a lower crosslink density of the three-dimensional networks in the aGO-resin interphase compared to the acGO-resin interphase. We also determined that OD itself promoted DGEBA homopolymerization. A DSC study further confirmed that the aGO nanocomposite exhibited lower Tg while acGO nanocomposite showed higher Tg compared to neat resin because of the difference in crosslink densities of the matrix around the different GOs.
Resumo:
The use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted recently as an effective method to reduce nitrous oxide (N2O) emissions from fertilised agricultural fields, whilst increasing yield and nitrogen use efficiency. Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser and consequently elevated emissions of nitrous oxide (N2O) can be expected. However, to date only limited data is available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment investigated the effect of the nitrification inhibitors (DMPP & 3MP+TZ) on N2O emissions and yield from a typical vegetable production system in sub-tropical Australia. Soil N2O fluxes were monitored continuously over an entire year with a fully automated system. Measurements were taken from three subplots for each treatment within a randomized complete blocks design. There was a significant inhibition effect of DMPP and 3MP+TZ on N2O emissions and soil mineral N content directly following the application of the fertiliser over the vegetable cropping phase. However this mitigation was offset by elevated N2O emissions from the inhibitor treatments over the post-harvest fallow period. Cumulative annual N2O emissions amounted to 1.22 kg-N/ha, 1.16 kg-N/ha, 1.50 kg-N/ha and 0.86 kg-N/ha in the conventional fertiliser (CONV), the DMPP treatment, the 3MP+TZ treatment and the zero fertiliser (0N) respectively. Corresponding fertiliser induced emission factors (EFs) were low with only 0.09 - 0.20% of the total applied fertiliser lost as N2O. There was no significant effect of the nitrification inhibitors on yield compared to the CONV treatment for the three vegetable crops (green beans, broccoli, lettuce) grown over the experimental period. This study highlights that N2O emissions from such vegetable cropping system are primarily controlled by post-harvest emissions following the incorporation of vegetable crop residues into the soil. It also shows that the use of nitrification inhibitors can lead to elevated N2O emissions by storing N in the soil profile that is available to soil microbes during the decomposition of the vegetable residues over the post-harvest phase. Hence the use of nitrification inhibitors in vegetable systems has to be treated carefully and fertiliser rates need to be adjusted to avoid excess soil nitrogen during the postharvest phase.