993 resultados para ZNO FILMS
Resumo:
Thin films of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(x = 0.1 to 0.3) (PMN-PT) were successfully grown on the platinum coated silicon substrate by pulsed excimer laser ablation technique. A thin template layer of LaSr0.5Co0.5O3 (LSCO) was deposited on platinum substrate prior to the deposition of PMN-PT thin films. The composition and the structure of the films were modulated via proper variation of the deposition parameter such as substrate temperature, laser fluence and thickness of the template layers. We observed the impact of the thickness of LSCO template layer on the orientation of the films. The crystallographic structure and compositional variation were confirmed with x-ray diffraction and energy diffraction x-ray (EDX) analysis. A room temperature dielectric constant varying from 2000 to 4500 was noted for different composition of the films. The dielectric properties of the films were studied over the frequency range of 100 Hz - 100 kHz over a wide range of temperatures. The films exhibited the relaxor-type behavior that was characterized by the frequency dispersion of the temperature of dielectric constant maxima (Tm) and also diffuse phase transition. This relaxor nature in PMN-PT thin films was attributed to freezing of the dipole moment, which takes place below a certain temperature. This phenomenon was found to be very similar to spin glass system, where spins are observed to freeze after certain temperature.
Resumo:
We report the shape transformation of ZnO nanorods/nanotubes at temperatures (similar to 700 degrees C) much lower than the bulk melting temperature (1975 degrees C). With increasing annealing temperature, not only does shape transformation take place but the luminescence characteristics of ZnO are also modified. It is proposed that the observed shape transformation is due to surface diffusion, contradicting the previously reported notion of melting and its link to luminescence. Luminescence in the green-to-red region is observed when excited with a blue laser, indicating the conversion of blue to white light.
Resumo:
Thin films of Sb40Se20S40 with thickness 1000 nm were prepared by thermal evaporation technique. The amorphous nature of the thin films was verified by X-ray diffractometer. The chemical composition of the deposited thin films was examined by energy dispersive X-ray analysis (EDAX). The changes in optical properties due to the influence of laser radiation on amorphous thin films of Sb40Se20S40 glassy alloy were calculated from absorbance spectra as a function of photon energy in the wavelength region 450-900 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been observed that laser-irradiation of the films leads to a decrease in optical band gap while increase in absorption coefficient. The decrease in the optical band gap is explained on the basis of change in nature of films due to disorderness. The optical changes are supported by X-ray photoelectron spectroscopy and Raman spectroscopy. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The electrical switching behavior of amorphous GexSe35-xTe65 thin film samples has been studied in sandwich geometry of electrodes. It is found that these samples exhibit memory switching behavior, which is similar to that of bulk Ge-Se-Te glasses. As expected, the switching voltages of GexSe35-xTe65 thin film samples are lower compared to those of bulk samples. In both thin film amorphous and bulk glassy samples, the switching voltages are found to increase with the increase in Ge concentration, which is consistent with the increase in network connectivity with the addition of higher coordinated Ge atoms. A sharp increase is seen in the composition dependence of the switching fields of amorphous GexSe35-xTe65 films above x = 21, which can be associated with the stiffness transition. Further, the optical band gap of a-GexSe35-x Te-65 thin film samples, calculated from the absorption spectra, is found to show an increasing trend with the increase in Ge concentration, which is consistent with the variation of switching fields with composition. The increase in structural cross-linking with progressive addition of 4-fold coordinated Ge atoms is one of the main reasons for the observed increase in switching fields as well as band gaps of GexSe35-xTe65 samples. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We have reported the synthesis of ZnO nanotips on a multi walled carbon nanotube (MWCNT) mat by a vapour transport process. This combination of ZnO nanotips and a MWCNT mat exhibit ideal field emission behaviour. The turn on field and threshold field is found to be 0.34 and 1.5 V mu m(-1), respectively. The low threshold field is due to the good adherence of the ZnO nanotips on the MWCNT mat. The field enhancement factor is found to be 5 x 10(2) which is in agreement with the intrinsic field emission factor of ZnO nanotips. The emission current is found to be highly stable even at moderate vacuum.
Resumo:
Zn(1-x)Fe(x)O(1+0.5x) (x = 0.5-5 mol%) nanoparticles were synthesized by a low temperature solution combustion route. The structural characterization of these nanoparticles by PXRD, SEM and TEM confirmed the phase purity of the samples and indicated a reduction in the particle size with increase in Fe content. A small increase in micro strain in the Fe doped nanocrystals is observed from W-H plots. EPR spectrum exhibits an intense resonance signal with effective g values at g approximate to 2.0 with a sextet hyperfine structure (hfs) besides a weak signal at g approximate to 4.13. The signal at g approximate to 2.0 with a sextet hyperfine structure might be due to manganese impurity where as the resonance signal at g approximate to 4.13 is due to iron. The optical band gap E-g was found to decrease with increase of Fe content. Raman spectra exhibit two non-polar optical phonon (E-2) modes at low and high frequencies at 100 and 435 cm(-1) in Fe doped samples. These modes broaden and disappear with increase of Fe do pant concentration. TL measurements of gamma-irradiated (1-5 kGy) samples show a main glow peak at 368 degrees C at a warming rate of 6.7 degrees Cs-1. The thermal activation parameters were estimated from Glow peak shape method. The average activation energy was found to be in the range 0.34-2.81 eV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Copper dodecanoate films prepared by emulsion method exhibit superhydrophobic property with water contact angle of 155 degrees and sliding angle of <2 degrees. The films have been characterised by using X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy techniques. Surface microstructure of copper dodecanoate consists of numerous microscale papillas of about 6-12 mu m in length with a diameter in the range of 360-700 nm. The superhydrophobicity of the films is due to their dual micronano surface morphology. The wetting behaviour of the film surface was studied by a simple water immersion test. The results show that copper dodecanoate film retained superhydrophobic property even after immersing in water for about 140 h. The optical absorption spectrum exhibits two broadbands centred at 388 and 630 nm that have been assigned to B-2(1g) -> E-2(g) and B-2(1g) -> B-2(2g) transitions of Cu2+ ions, respectively. The electron paramagnetic resonance spectrum exhibits two resonance signals with effective g values at g(parallel to)approximate to 2.308 and g(perpendicular to) approximate to 2.071, which suggests that the unpaired electron occupies d(x2-y2) orbital in the ground state. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The synthesis of cobalt-doped ZnO nanowires is achieved using a simple, metal salt decomposition growth technique. A sequence of drop casting on a quartz substrate held at 100 degrees C and annealing results in the growth of nanowires of average (modal) length similar to 200 nm and diameter of 15 +/- 4 nm and consequently an aspect ratio of similar to 13. A variation in the synthesis process, where the solution of mixed salts is deposited on the substrate at 25 degrees C, yields a grainy film structure which constitutes a useful comparator case. X-ray diffraction shows a preferred 0001] growth direction for the nanowires while a small unit cell volume contraction for Co-doped samples and data from Raman spectroscopy indicate incorporation of the Co dopant into the lattice; neither technique shows explicit evidence of cobalt oxides. Also the nanowire samples display excellent optical transmission across the entire visible range, as well as strong photoluminescence (exciton emission) in the near UV, centered at 3.25 eV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper, the influence of nickel incorporation on the mechanical properties and the in vitro bioactivity of hydrogenated carbon thin films were investigated in detail. Amorphous hydrogenated carbon (a-C : H) and nickel-incorporated hydrogenated carbon (Ni/a-C : H) thin films were deposited onto the Si substrates by using reactive biased target ion beam deposition technique. The films' chemical composition, surface roughness, microstructure and mechanical properties were investigated by using XPS, AFM, TEM, nanoindentation and nanoscratch test, respectively. XPS results have shown that the film surface is mainly composed of nickel, nickel oxide and nickel hydroxide, whereas at the core is nickel carbide (Ni3C) only. The presence of Ni3C has increased the sp(2) carbon content and as a result, the mechanical hardness of the film was decreased. However, Ni/a-C : H films shows very low friction coefficient with higher scratch-resistance behavior than that of pure a-C : H film. In addition, in vitro bioactivity study has confirmed that it is possible to grow dense bone-like apatite layer on Ni/a-C : H films. Thus, the results have indicated the suitability of the films for bone-related implant coating applications. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Tungsten incorporated diamond like carbon (W-DLC) nanocomposite thin films with variable fractions of tungsten were deposited by using reactive biased target ion beam deposition technique. The influence of tungsten incorporation on the microstructure, surface topography, mechanical and tribological properties of the DLC were studied using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy. Atomic force microscope (AFM), transmission electron microscopy (TEM), nano-indentation and nano-scratch tests. The amount of W in films gets increases with increasing target bias voltage and most of the incorporated W reacts with carbon to form WC nanoclusters. Using TEM and FFT pattern, it was found that spherical shaped WC nanoclusters were uniformly dispersed in the DLC matrix and attains hexagonal (W2C) crystalline structure at higher W concentration. On the other hand, the incorporation of tungsten led to increase the formation of C-sp(2) hybridized bonding in DLC network and which is reflected in the hardness and elastic modulus of W-DLC films. Moreover, W-DLC films show very low friction coefficient and increased adhesion to the substrate than the DLC film, which could be closely related to its unique nanostructure of the W incorporated thin films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Amorphous thin film Ge15Te85-xSnx (1 <= x <= 5) and Ge17Te83-xSnx (1 <= x <= 4) switching devices have been deposited in sandwich geometry using a flash evaporation technique, with aluminum as the top and bottom electrodes. Electrical switching studies indicate that these films exhibit memory type electrical switching behavior. The switching fields for both the series of samples have been found to decrease with increase in Sn concentration, which confirms that the metallicity effect on switching fields/voltages, commonly seen in bulk glassy chalcogenides, is valid in amorphous chalcogenide thin films also. In addition, there is no manifestation of rigidity percolation in the composition dependence of switching fields of Ge15Te85-xSnx and Ge17Te83-xSnx amorphous thin film samples. The observed composition dependence of switching fields of amorphous Ge15Te85-xSnx and Ge17Te83-xSnx thin films has been understood on the basis of Chemically Ordered Network model. The optical band gap for these samples, calculated from the absorption spectra, has been found to exhibit a decreasing trend with increasing Sn concentration, which is consistent with the composition dependence of switching fields.
Resumo:
Thin films were thermally evaporated from the bulk glasses of As40Se60-xSbx (with x = 0, 5, 10, 15 at.%) under high vacuum. We have characterized the deposited films by Fourier Transform Infrared spectroscopy. The relationship between the structural and optical properties and the compositional variation has been investigated. Increasing Sb content was found to affect the thermal and optical properties of these films. Non-direct electronic transition was found to be responsible for the photon absorption inside the investigated films. It was found that, the optical band gap E-o decreases while the width of localized states (Urbach energy) E-e increases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Alumina (Al2O3) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 degrees C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance. AC conductivity and activation energy were determined and the results are discussed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Photoresponse of n-type indium-doped ZnO and a p-type polymer (PEDOT:PSS) heterojunction devices are studied, juxtaposed with the photoluminescence of the In-ZnO samples. In addition to the expected photoresponse in the ultraviolet, the heterojunctions exhibit significant photoresponse to the visible (532 nm). However, neither the doped ZnO nor PEDOT: PSS individually show any photoresponse to visible light. The sub-bandgap photoresponse of the heterojunction originates from visible photon mediated e-h generation between the In-ZnO valence band and localized states lying within the band gap. Though increased doping of In-ZnO has limited effect on the photoluminescence, it significantly diminishes the photoresponse. The study indicates that optimally doped devices are promising for the detection of wavelengths in selected windows in the visible. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4704655]
Resumo:
0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) (0.85PMN-0.15PT) ferroelectric relaxor thin films have been deposited on La0.5Sr0.5CoO3/(111) Pt/TiO2/SiO2/Si by pulsed laser ablation by varying the oxygen partial pressures from 50 mTorr to 400 mTorr. The X-ray diffraction pattern reveals a pyrochlore free polycrystalline film. The grain morphology of the deposited films was studied using scanning electron microscopy and was found to be affected by oxygen pressure. By employing dynamic contact-electrostatic force microscopy we found that the distribution of polar nanoregions is majorly affected by oxygen pressure. Finally, the electric field induced switching in these films is discussed in terms of domain wall pinning.