966 resultados para XP-Bond
Resumo:
Disulfide bond formation is catalyzed in the periplasm of Escherichia coli. This process involves at least two proteins: DsbA and DsbB. Recent evidence suggests that DsbA, a soluble periplasmic protein directly catalyzes disulfide bond formation in proteins, whereas DsbB, an inner membrane protein, is involved in the reoxidation of DsbA. Here we present direct evidence of an interaction between DsbA and DsbB. (Kishigami et al. [Kishigami, S., Kanaya, E., Kikuchi, M. & Ito, K. (1995) J. Biol. Chem. 270, 17072-17074] have described similar findings.) We isolated a dominant negative mutant of dsbA, dsbAd, where Cys-33 of the DsbA active site is changed to tyrosine. Both DsbAd and DsbA are able to form a mixed disulfide with DsbB, which may be an intermediate in the reoxidation of DsbA. This complex is more stable with DsbAd. The dominance can be suppressed by increasing the production of DsbB. By using mutants of DsbB in which one or two cysteines have been changed to alanine, we show that only Cys-104 is important for complex formation. Therefore, we suggest that in vivo, reduced DsbA forms a complex with DsbB in which Cys-30 of DsbA is disulfide-bonded to Cys-104 of DsbB. Cys-104 is rapidly replaced by Cys-33 of DsbA to generate the oxidized form of this protein.
Resumo:
A sensitive test for kinetic unfolding intermediates in ribonuclease A (EC 3.1.27.5) is performed under conditions where the enzyme unfolds slowly (10 degrees C, pH 8.0, 4.5 M guanidinium chloride). Exchange of peptide NH protons (2H-1H) is used to monitor structural opening of individual hydrogen bonds during unfolding, and kinetic models are developed for hydrogen exchange during the process of protein unfolding. The analysis indicates that the kinetic process of unfolding can be monitored by EX1 exchange (limited by the rate of opening) for ribonuclease A in these conditions. Of the 49 protons whose unfolding/exchange kinetics was measured, 47 have known hydrogen bond acceptor groups. To test whether exchange during unfolding follows the EX2 (base-catalyzed) or the EX1 (uncatalyzed) mechanism, unfolding/exchange was measured both at pH 8.0 and at pH 9.0. A few faster-exchanging protons were found that undergo exchange by both EX1 and EX2 processes, but the 43 slower-exchanging protons at pH 8 undergo exchange only by the EX1 mechanism, and they have closely similar rates. Thus, it is likely that all 49 protons undergo EX1 exchange at the same rate. The results indicate that a single rate-limiting step in unfolding breaks the entire network of peptide hydrogen bonds and causes the overall unfolding of ribonuclease A. The additional exchange observed for some protons that follows the EX2 mechanism probably results from equilibrium unfolding intermediates and will be discussed elsewhere.
Resumo:
We analyse volatility spillovers in EMU sovereign bond markets. First, we examine the unconditional patterns during the full sample (April 1999-January 2014) using a measure recently proposed by Diebold and Yılmaz (2012). Second, we make use of a dynamic analysis to evaluate net directional volatility spillovers for each of the eleven countries under study, and to determine whether core and peripheral markets present differences. Finally, we apply a panel analysis to empirically investigate the determinants of net directional spillovers of this kind.
Resumo:
Palladium and bimetallic Pd–Ni nanoparticles (NPs) protected by polyvinylpyrrolidone were prepared by the reduction-by-solvent method and deposited on multiwalled carbon nanotubes (MWCNTs). The catalytic activity of these NPs to carbon–carbon bond-forming reactions was studied by using 0.1 mol % Pd loading, at 120 °C for 1 h and water as a solvent under ligand-free conditions. The Suzuki–Miyaura reaction took place quantitatively for the cross-coupling of 4-bromoanisole with phenylboronic acid, better than those obtained with potassium phenyltrifluoroborate, with Pd50Ni50/MWCNTs as a catalyst and K2CO3 as a base and TBAB as an additive, with good recyclability during 4 cycles with some Ni leaching. The Hiyama reaction of 4-iodoanisole with trimethoxyphenylsilane, under fluoride-free conditions using 50 % aqueous NaOH solution, was performed with Pd/MWCNTs as a catalyst in 83 % yield with low recyclability. For the Mizoroki-Heck reaction 4-iodoanisole and styrene gave the corresponding 4-methoxystilbene quantitatively with Pd50Ni50/MWCNTs using K2CO3 as a base and TBAB as an additive although the recycle failed. In the case of the Sonogashira-Hagihara reaction, Pd/MWCNTs had to be used as a catalyst and pyrrolidine as a base for the coupling of 4-iodoanisole with phenylacetylene under copper-free conditions. The corresponding 4-methoxytolane was quantitatively obtained allowing the recycling of the catalyst during 3 cycles.
Resumo:
The hexahydride complex OsH6(PiPr3)2 (1) activates the C–OMe bond of 1-(2-methoxy-2-oxoethyl)-3-methylimidazolium chloride (2), in addition to promoting the direct metalation of the imidazolium group, to afford a five-coordinate OsCl(acyl-NHC)(PiPr3)2 (3) compound. The latter coordinates carbon monoxide, oxygen, and molecular hydrogen to give the corresponding carbonyl (4), dioxygen (5), and dihydrogen (6) derivatives. Complex 3 also promotes the heterolytic bond activation of pinacolborane (HBpin), using the acyl oxygen atom as a pendant Lewis base. The hydride ligand and the Bpin substituent of the Fischer-type carbene of the resulting complex 7 activate the O–H bond of alcohols and water. As a consequence, complex 3 is a metal ligand cooperating catalyst for the generation of molecular hydrogen, by means of both the alcoholysis and hydrolysis of pinacolborane, via the intermediates 7 and 6.
Resumo:
Using a combination of experimental and computational methods, mainly FTIR and DFT calculations, new insights are provided here in order to better understand the cleavage of the C–C bond taking place during the complete oxidation of ethanol on platinum stepped surfaces. First, new experimental results pointing out that platinum stepped surfaces having (111) terraces promote the C–C bond breaking are presented. Second, it is computationally shown that the special adsorption properties of the atoms in the step are able to promote the C–C scission, provided that no other adsorbed species are present on the step, which is in agreement with the experimental results. In comparison with the (111) terrace, the cleavage of the C–C bond on the step has a significantly lower activation energy, which would provide an explanation for the observed experimental results. Finally, reactivity differences under acidic and alkaline conditions are discussed using the new experimental and theoretical evidence.
Resumo:
Mutilated draft of a bond of Steward Jonathan Hastings and Robert Sharp of Brooklyn, Mass. to the President and Fellows of Harvard College for 1,000 pounds.
Resumo:
Printed bond of James Cowing, Shoemaker and Timothy Doty, yeoman of Ballstown, New York to the President and Fellows of Harvard College for 200 ounces of silver on behalf of student David Cowing. The bond was witnessed by Samuel Randall and Lettes Jenne.
Resumo:
Two folio-sized leaves containing a one-and-a-half page copy of the bond between John Leverett and Elisha Cooke to John White, Treasurer of Harvard, for £200. The bond was witnessed by William Austin and Mary Gilbert. An October 3, 1726 receipt of payment from Nathaniel Byfield on the bond, signed by Treasurer Edward Hutchinson, is located on the verso of the first leaf.