998 resultados para XAFS ,Speciation ,Migration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor receptor (GCSFR) signaling participates in the production of neutrophilic granulocytes during normal hematopoietic development, with a particularly important role during emergency hematopoiesis. This study describes the characterization of the zebrafish gcsf and gcsfr genes, which showed broad conservation and similar regulation to their mammalian counterparts. Morpholino-mediated knockdown of gcsfr and overexpression of gcsf revealed the presence of an anterior population of myeloid cells during primitive hematopoiesis that was dependent on GCSF/GCSFR for development and migration. This contrasted with a posterior domain that was largely independent of this pathway. Definitive myelopoiesis was also partially dependent on a functional GCSF/GCSFR pathway. Injection of bacterial lipopolysaccharide elicited significant induction of gcsf expression and emergency production of myeloid cells, which was abrogated by gcsfr knockdown. Collectively, these data demonstrate GCSF/GCSFR to be a conserved signaling system for facilitating the production of multiple myeloid cell lineages in both homeostatic and emergency conditions, as well as for early myeloid cell migration, establishing a useful experimental platform for further dissection of this pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium speciation: Aluminium speciation in NTf2 ionic liquids has a strong influence on its electrodeposition from the liquid mixture. This work probed the nature of these species and proposes that the electroactive species involved are either [AlCl3(NTf2)] or [AlCl2(NTf2)2] (e.g., see figure).


Electrodeposition of aluminium is possible from solutions of AlCl3 dissolved in the 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (C4mpyrNTf2) ionic liquid. However, electrodeposition is dependant on the AlCl3 concentration as it only occurs at concentrations >1.6 mol L−1. At these relatively high AlCl3 concentrations the C4mpyrNTf2/AlCl3 mixtures exhibit biphasic behaviour. Notably, at 1.6 mol L−1 AlCl3, aluminium can only be electrodeposited from the upper phase. Conversely, we found that at 3.3 mol L−1 aluminium electrodeposition can only occur from the lower phase. The complex chemistry of the C4mpyrNTf2/AlCl3 system is described and implications of aluminium speciation in several C4mpyrNTf2/AlCl3 mixtures, as deduced from Raman and 27Al NMR spectroscopic data, are discussed. The 27Al NMR spectra of the C4mpyrNTf2/AlCl3 mixtures revealed the presence of both tetrahedrally and octahedrally coordinated aluminium species. Raman spectroscopy revealed that the level of uncoordinated NTf2 anions decreased with increasing AlCl3 concentration. Quantum chemical calculations using density functional and ab initio theory were employed to identify plausible aluminium-containing species and to calculate their vibrational frequencies, which in turn assisted the assignment of the observed Raman bands. The data indicate that the electroactive species involved are likely to be either [AlCl3(NTf2)] or [AlCl2(NTf2)2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of phylogenetics, phylogeography and palaeoenvironmental studies is providing major insights into the historical forces that have shaped the Earth’s biomes. Yet our present view is biased towards arctic and temperate/tropical forest regions, with very little focus on the extensive arid regions of the planet. The Australian arid zone is one of the largest desert landform systems in the world, with a unique, diverse and relatively well-studied biota. With foci on palaeoenvironmental and molecular data, we here review what is known about the assembly and maintenance of this biome in the context of its physical history, and in comparison with other mesic biomes. Aridification of Australia began in the Mid-Miocene, around 15 million years, but fully arid landforms in central Australia appeared much later, around 1–4 million years. Dated molecular phylogenies of diverse taxa show the deepest divergences of arid-adapted taxa from the Mid-Miocene, consistent with the onset of desiccation. There is evidence of arid-adapted taxa evolving from mesicadapted ancestors, and also of speciation within the arid zone. There is no evidence for an increase in speciation rate during the Pleistocene, and most arid-zone species lineages date to the Pliocene or earlier. The last 0.8 million years have seen major fluctuations of the arid zone, with large areas covered by mobile sand dunes during glacial maxima. Some large, vagile taxa show patterns of recent expansion and migration throughout the arid zone, in parallel with the ice sheet-imposed range shifts in Northern Hemisphere taxa. Yet other taxa show high lineage diversity and strong phylogeographical structure, indicating persistence in multiple localised refugia over several glacial maxima. Similar to the Northern Hemisphere, Pleistocene range shifts have produced suture zones, creating the opportunity for diversification and speciation through hybridisation, polyploidy and parthenogenesis. This review highlights the opportunities that development of arid conditions provides for rapid and diverse evolutionary radiations, and re-enforces the emerging view that Pleistocene environmental change can have diverse impacts on genetic structure and diversity in different biomes. There is a clear need for more detailed and targeted phylogeographical studies of Australia’s arid biota and we suggest a framework and a set of a priori hypotheses by which to proceed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic is a proven carcinogen that is found in the soil in gold mining regions at concentrations that can be thousands of times greater than gold. During mining arsenic is released into the environment, easily entering surrounding water bodies.
The yabby (Cherax destructor) is a common freshwater crustacean native to Australia's central and eastern regions. Increasing aquaculture and export of these animals has led us to question the effects of mine contamination on the yabbies themselves and to assess any potential risks to consumers. This study determined the species of arsenic present in a number of organs from the yabby. Several arsenic contaminated dam sites in the goldfields of western Victoria were sampled for yabby populations. Yabbies from these sites were collected and analysed for arsenic speciation using high performance liquid chromatography–inductively coupled plasma-mass spectrometry (HPLC–ICP-MS). Results showed that type of exposure influenced which arsenic species was present in each organ, and that as arsenic exposure increased the prevalence of inorganic arsenic species, mostly As(V), within the tissues increased. The bioaccessibility of the arsenic present in the abdominal muscle (the edible portion for humans) of the yabbies was assessed. It was found that the majority of the bioaccessible arsenic was present as inorganic As (III) and As(V).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present scale of migration raises a number of public health challenges. In this paper, the health consequences of migration are examined among forced migrants (internally displaced people and refugees) and voluntary migrants. Alongside we also focus on the health needs of migrants in developed and developing nations. Theory and evidence are linked to document existing needs and access to health services. We argue that public health has a role to play in building social inclusiveness and equity, and make recommendations about how this process of inclusion can be facilitated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migrants, such as birds or representatives of other taxa, usually make use of several stopover sites to cover the distance between their site of origin and destination. Potentially, multiple routes exist, but often little is known about the causes and consequences of alternative migration routes. Apart from their geographical distribution, the suitability of potential sites might play an important role in the animals’ decisions for a particular itinerary. We used an optimal-migration model to test three nonmutually exclusive hypotheses leading to variations in the spring migration routes of a subspecies of Red Knot, Calidris canutus islandica, which migrates from wintering grounds in Western Europe to breeding grounds in Greenland and the Canadian Arctic: the breeding location hypothesis, the energy budget hypothesis, and the predation risk hypothesis. Varying only breeding location, the model predicted that birds breeding in the Canadian Arctic and on West Greenland stop over on Iceland, whereas birds breeding in East and Northeast Greenland migrate via northern Norway, a prediction that is supported by empirical findings. Energy budgets on stopover sites had a strong influence on the choice of route and staging times. Varying foraging-intensity and mass-dependent predation risk prompted the birds to use less risky sites, if possible. The effect of simultaneous changes in the energy budget and predation risk strongly depended on the site where these occurred. Our findings provide potential explanations for the observations that C. canutus islandica uses a diverse array of migration routes. Scrutinizing the three alternative driving forces for the choice of migratory routes awaits further, specific data collection in rapidly developing fields of research (e.g., predation risk assessment, GPS tracking). Generally, the type of modeling presented here may not only highlight alternative explanations, but also direct follow-up empirical research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subspecies Calidris canutus islandica of the Red Knot breeds on the arctic tundra of northeastern Canada and northern Greenland and winters along the coasts of northwestern Europe. During northward migration, it stops over in either Iceland or northern Norway. It has been assumed that it does the same during southward migration. Using ratios of stable carbon isotopes (δ 13 C) in whole blood, blood cells, and plasma, we investigated evidence for a stopover in Iceland en route from the breeding grounds to the Dutch Wadden Sea. With the expected diet (shellfish) and stopover duration at Iceland (12-15 days, maximum 17 days) and the turnover rates of blood cells (15.1 days) and plasma (6.0 days), Red Knots that stopped in Iceland should arrive with a blood (cell) δ 13 C midway between a tundra (-24.7[per thousand]) and a marine value (-14.0[per thousand]) and a plasma δ13 C approaching the marine value (-15.3[per thousand]). However, many adults arriving at the Wadden Sea had δ13 C ratios in blood (cells) and plasma below these levels, and some arrived with clear tundra signals in blood cells, suggesting that they skipped Iceland during southward migration. Surprisingly, available data suggest this also to be true for juveniles during their first southward migration. The δ 13 C signature of second-year birds confirmed that they oversummered in the Wadden Sea. Our findings contradict the largely untested idea that juvenile shorebirds make more stopovers than adults as well as the idea that the migration between the Nearctic and Europe is necessarily a two-leg process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decisions taken during migration can have a large effect on the fitness of birds. Migration must be accurately timed with food availability to allow efficient fueling but is also constrained by the optimal arrival date at the breeding site. The decision of when to leave a site can be driven by energetics (sufficient body stores to fuel flight), time-related cues (internal clock under photoperiodic control), or external cues (temperature, food resources). An individual based model (IBM) that allows a mechanistic description of a range of departure decision rules was applied to the spring migration of pink-footed geese (Anser brachyrhynchus) from wintering grounds in Denmark to breeding grounds on Svalbard via 2 Norwegian staging sites. By comparing predicted with observed departure dates, we tested 7 decision rules. The most accurate predictions were obtained from a decision rule based on a combination of cues including the amount of body stores, date, and plant phenology. Decision rules changed over the course of migration with the external cue decreasing in importance and the time-related cue increasing in importance for sites closer to breeding grounds. These results are in accordance with descriptions of goose migration, following the “green-wave”: Geese track the onset of plant growth as it moves northward in spring, with an uncoupling toward the end of the migration if time is running out. We demonstrate the potential of IBMs to study the possible mechanisms underlying stopover ecology in migratory birds and to serve as tools to predict consequences of environmental change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An international workshop on animal migration was held at the Lorentz Center in Leiden, The Netherlands, 2–6 March 2009, bringing together leading theoreticians and empiricists from the major migratory taxa, aiming at the identification of cutting-edge questions in migration research that cross taxonomic borders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. How climatic changes affect migratory birds remains difficult to predict because birds use multiple sites in a highly interdependent manner. A better understanding of how conditions along the flyway affect migration and ultimately fitness is of paramount interest.

2. Therefore, we developed a stochastic dynamic model to generate spatially and temporally explicit predictions of stop-over site use. For each site, we varied energy expenditure, onset of spring, intake rate and day-to-day stochasticity independently. We parameterized the model for the migration of pink-footed goose Anser brachyrhynchus from its wintering grounds in Western Europe to its breeding grounds on Arctic Svalbard.

3. Model results suggested that the birds follow a risk-averse strategy by avoiding sites with comparatively high energy expenditure or stochasticity levels in favour of sites with highly predictable food supply and low expenditure. Furthermore, the onset of spring on the stop-over sites had the most pronounced effect on staging times while intake rates had surprisingly little effect.

4. Subsequently, using empirical data, we tested whether observed changes in the onset of spring along the flyway explain the observed changes in migration schedules of pink-footed geese from 1990 to 2004. Model predictions generally agreed well with empirically observed migration patterns, with geese leaving the wintering grounds earlier while considerably extending their staging times in Norway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the face of hybridization, species integrity can only be maintained through post-zygotic isolating barriers (PIBs). PIBs need not only be intrinsic (i.e. hybrid inviability and sterility caused by developmental incompatibilities), but also can be extrinsic due to the hybrid's intermediate phenotype falling between the parental niches. For example, in migratory species, hybrid fitness might be reduced as a result of intermediate migration pathways and reaching suboptimal wintering grounds. Here, we test this idea by comparing the juvenile to adult survival probabilities as well as the wintering grounds of pied flycatchers (Ficedula hypoleuca), collared flycatchers (Ficedula albicollis) and their hybrids using stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in feathers developed at the wintering site. Our result supports earlier observations of largely segregated wintering grounds of the two parental species. The isotope signature of hybrids clustered with that of pied flycatchers. We argue that this pattern can explain the high annual survival of hybrid flycatchers. Hence, dominant expression of the traits of one of the parental species in hybrids may substantially reduce the ecological costs of hybridization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-distance bird migration consists of several flight episodes interrupted by a series of resting and refuelling periods on stopover sites. We assessed the role of food availability as the determinant of staging decisions focusing on the following three aspects of food availability: intake rates, stochasticity in intake rates and onset of spring. Using stochastic dynamic modelling, we investigated their impact on staging times and expected fitness. Subsequently, we compared relations in the use of the stopover sites as predicted by the model with empirical data of the Svalbard-breeding population of Pink-footed Goose Anser brachyrhynchus collected in the period 1990–2002. Our results indicate that, for the case of Pink-footed Geese, spring phenology determines a major part of the migration schedule. In contrast to our expectations, intake rates were generally only of minor importance; however, when approaching the breeding grounds their significance increased. Expected fitness at arrival on the breeding grounds showed that the geese can compensate for changes in a broad range of food availability and also cope with varying degrees of stochasticity. However, declining intake rates at the last stopover site or very late onsets of spring clearly decreased fitness. As predicted by the model, the use of stopover sites was interdependent – from empirical data we derived negative relationships between the staging durations of subsequent sites. These results lend credit to an integrated spatially explicit approach focussing on multiple stopover site characteristics when attempting to improve our understanding of bird migration.