925 resultados para Wildlife watching
Resumo:
Although shorebirds spending the winter in temperate areas frequently use estuarine and supratidal (upland) feeding habitats, the relative contribution of each habitat to individual diets has not been directly quantified. We quantified the proportional use that Calidris alpina pacifica (Dunlin) made of estuarine vs. terrestrial farmland resources on the Fraser River Delta, British Columbia, using stable isotope analysis (δ13C, δ15N) of blood from 268 Dunlin over four winters, 1997 through 2000. We tested for individual, age, sex, morphological, seasonal, and weather-related differences in dietary sources. Based on single- (δ13C) and dual-isotope mixing models, the agricultural habitat contributed approximately 38% of Dunlin diet averaged over four winters, with the balance from intertidal flats. However, there was a wide variation among individuals in the extent of agricultural feeding, ranging from about 1% to 95% of diet. Younger birds had a significantly higher terrestrial contribution to diet (43%) than did adults (35%). We estimated that 6% of adults and 13% of juveniles were obtaining at least 75% of their diet from terrestrial sources. The isotope data provided no evidence for sex or overall body size effects on the proportion of diet that is terrestrial in origin. The use of agricultural habitat by Dunlin peaked in early January. Adult Dunlin obtained a greater proportion of their diet terrestrially during periods of lower temperatures and high precipitation, whereas no such relationship existed for juveniles. Seasonal variation in the use of agricultural habitat suggests that it is used more during energetically stressful periods. The terrestrial farmland zone appears to be consistently important as a habitat for juveniles, but for adults it may provide an alternative feeding site used as a buffer against starvation during periods of extreme weather. Loss or reduction of agricultural habitat adjacent to estuaries may negatively impact shorebird fitness, with juveniles disproportionately affected.
Resumo:
Wetlands in southern Alberta are often managed to benefit waterfowl and cattle production. Effects on other species usually are not examined. I determined the effect of managed wetlands on upland-nesting shorebirds in southern Alberta by comparing numbers of breeding willets (Catoptrophorus semipalmatus), marbled godwits (Limosa fedoa), and long-billed curlews (Numenius americanus) among areas of managed wetlands, natural wetland basins, and no wetland basins from 1995 to 2000. Surveys were carried out at 21 sites three times each year. Nine to ten of these areas (each 2 km2) were searched for nests annually from 1998–2000. Numbers of willets and marbled godwits and their nests were always highest in areas with managed wetlands, probably because almost all natural wetland basins were dry in this region in most years. Densities of willets seen during pre-incubation surveys averaged 2.3 birds/km2 in areas of managed wetlands, 0.4 in areas of natural wetland basins, and 0.1 in areas with no wetland basins. Nest densities of willets (one search each season) averaged 1.5, 0.9, and 0.3 nests/km2 in areas of managed, natural, and no wetland basins, respectively. Similarly, pre-incubation surveys averaged 1.6, 0.6, and 0.2 godwits/km2 in areas of managed, natural, and no wetland basins, and 1.2, 0.3, and 0.1 godwit nests/km2. For long-billed curlews, pre-incubation surveys averaged 0.1, 0.2, and 0.1 birds/km2, and 0, 0.2, and 0 nests/km2. Nest success was similar in areas with and without managed wetlands. Shallow managed wetlands in this region appear beneficial to willets and marbled godwits, but not necessarily to long-billed curlews. Only 8% of marked willets and godwits with nests in the area were seen or heard during surveys, compared with 29% of pre-laying individuals and 42% of birds with broods. This suggests that a low and variable percentage of these birds is counted during breeding bird surveys, likely limiting their ability to adequately monitor populations of these species.
Resumo:
Small, at-risk populations are those for which accurate demographic information is most crucial to conservation and recovery, but also where data collection is constrained by logistical challenges and small sample sizes. Migratory animals in particular may experience a wide range of threats to survival and reproduction throughout each annual cycle, and identification of life stages most critical to persistence may be especially difficult for these populations. The endangered eastern Canadian breeding population of Piping Plover (Charadrius melodus melodus) was estimated at only 444 adults in 2005, and extensive effort has been invested in conservation activities, reproductive monitoring, and marking of individual birds, providing a comprehensive data set on population dynamics since 1998. We used these data to build a matrix projection model for two Piping Plover population segments that nest in eastern Canada in order to estimate both deterministic and stochastic rates of population growth (λd and λs, respectively). Annual population censuses suggested moderate growth in abundance between 1998–2003, but vital rate estimates indicated that this temporary growth may be replaced by declines in the long term, both in southern Nova Scotia (λd = 1.0043, λs = 0.9263) and in the Gulf of St. Lawrence (λd = 0.9651, λs = 0.8214). Nonetheless, confidence intervals on λ estimates were relatively wide, highlighting remaining uncertainty in future population trajectories. Differences in projected growth between regions appear to be driven by low estimated juvenile post-fledging survival in the Gulf, but threats to juveniles of both population segments following departure from nesting beaches remain unidentified. Similarly, λ in both population segments was particularly sensitive to changes in adult survival as expected for most migratory birds, but very little is understood about the threats to Piping Plover survival during migration and overwintering. Consequently, we suggest that future recovery efforts for these and other vulnerable migrants should quantify and manage the largely unknown sources of both adult and juvenile mortality during non-breeding seasons while maintaining current levels of nesting habitat protection.
Resumo:
We examined nest site selection by Puerto Rican Parrots, a secondary cavity nester, at several spatial scales using the nest entrance as the central focal point relative to 20 habitat and spatial variables. The Puerto Rican Parrot is unique in that, since 2001, all known nesting in the wild has occurred in artificial cavities, which also provided us with an opportunity to evaluate nest site selection without confounding effects of the actual nest cavity characteristics. Because of the data limitations imposed by the small population size of this critically endangered endemic species, we employed a distribution-free statistical simulation approach to assess site selection relative to characteristics of used and unused nesting sites. Nest sites selected by Puerto Rican Parrots were characterized by greater horizontal and vertical visibility from the nest entrance, greater density of mature sierra palms, and a more westerly and leeward orientation of nest entrances than unused sites. Our results suggest that nest site selection in this species is an adaptive response to predation pressure, to which the parrots respond by selecting nest sites offering advantages in predator detection and avoidance at all stages of the nesting cycle. We conclude that identifying and replicating the “nest gestalt” of successful nesting sites may facilitate conservation efforts for this and other endangered avian species.
Resumo:
Populations of Lesser Scaup (Aythya affinis) have declined markedly in North America since the early 1980s. When considering alternatives for achieving population recovery, it would be useful to understand how the rate of population growth is functionally related to the underlying vital rates and which vital rates affect population growth rate the most if changed (which need not be those that influenced historical population declines). To establish a more quantitative basis for learning about life history and population dynamics of Lesser Scaup, we summarized published and unpublished estimates of vital rates recorded between 1934 and 2005, and developed matrix life-cycle models with these data for females breeding in the boreal forest, prairie-parklands, and both regions combined. We then used perturbation analysis to evaluate the effect of changes in a variety of vital-rate statistics on finite population growth rate and abundance. Similar to Greater Scaup (Aythya marila), our modeled population growth rate for Lesser Scaup was most sensitive to unit and proportional change in adult female survival during the breeding and non-breeding seasons, but much less so to changes in fecundity parameters. Interestingly, population growth rate was also highly sensitive to unit and proportional changes in the mean of nesting success, duckling survival, and juvenile survival. Given the small samples of data for key aspects of the Lesser Scaup life cycle, we recommend additional research on vital rates that demonstrate a strong effect on population growth and size (e.g., adult survival probabilities). Our life-cycle models should be tested and regularly updated in the future to simultaneously guide science and management of Lesser Scaup populations in an adaptive context.