992 resultados para Web radio
Resumo:
Plasma ionization, and associated mode transitions, in dual radio-frequency driven atmospheric pressure plasmas are governed through nonlinear frequency coupling in the dynamics of the plasma boundary sheath. Ionization in low-power mode is determined by the nonlinear coupling of electron heating and the momentary local plasma density. Ionization in high-power mode is driven by electron avalanches during phases of transient high electric fields within the boundary sheath. The transition between these distinctly different modes is controlled by the total voltage of both frequency components.
Resumo:
The complex dynamics of ionization and excitation mechanisms in capacitively coupled radio-frequency plasmas is discussed for single- and dual-frequency operations in low-pressure and atmospheric pressure plasmas. Electrons are energized through the dynamics of electric fields in the vicinity of the plasma boundary sheaths. Distinctly different power dissipation mechanisms can either co-exist or initiate mode transitions exhibiting characteristic spatio-temporal ionization structures. Phase resolved optical emission spectroscopy, in combination with adequate modelling of the population dynamics of excited states, and numerical simulations reveal dissipation associated with sheath expansion, sheath collapse, transient electron avalanches and wave–particle interactions. In dual-frequency systems the relative phase between the two frequency components provides additional strategies to tailor the plasma dynamics.
Resumo:
When mortality is high, animals run a risk if they wait to accumulate resources for improved reproduction so they may trade-off the time of reproduction with number and size of offspring. Animals may attempt to improve food acquisition by relocation, even in 'sit and wait' predators. We examine these factors in an isolated population of an orb-web spider Zygiella x-notata. The population was monitored for 200 days from first egg laying until all adults had died. Large females produced their first clutch earlier than did small females and there was a positive correlation between female size and the number and size of eggs produced. Many females, presumably without eggs, abandoned their web site and relocated their web position. This is presumed because female Zygiella typically guard their eggs. In total, c. 25% of females reproduced but those that relocated were less likely to do so, and if they did, they produced the clutch at a later date than those that remained. When the date of lay was controlled there was no effect of relocation on egg number but relocated females produced smaller eggs. The data are consistent with the idea that females in resource-poor sites are more likely to relocate. Relocation seems to be a gamble to find a more productive site but one that achieves only a late clutch of small eggs and few achieve that.
Resumo:
Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet is investigated using both advanced optical diagnostics and numerical simulations of the dynamic plasma chemistry. Laser spectroscopic measurements of absolute densities of ground state atomic oxygen reveal steep gradients at the interface between the plasma core and the effluent region. Spatial profiles resolving the interelectrode gap within the core plasma indicate that volume processes dominate over surface reactions. Details of the production and destruction processes are investigated in numerical simulations benchmarked by phase-resolved optical emission spectroscopy. The main production mechanisms are electron induced and hence most efficient in the vicinity of the plasma boundary sheath, where electrons are energized. The destruction is driven through chemical heavy particle reactions. The resulting spatial profile of atomic oxygen is relatively flat. The power dependence of the atomic oxygen density obtained by the numerical simulation is in very good agreement with the laser spectroscopic measurements.
Resumo:
For Special Operations Forces, an important attribute of any future radio will be the ability to conceal transmissions from the enemy while transmitting large amounts of data for situational awareness and communications. These requirements will mean that military wireless systems designers will need to consider operating frequencies in the mm-wave bands: The high data rates that are achievable at these frequencies and the propagation characteristics at this wavelength will provide many benefits for the implementation of 'stealth radio'. This article discusses some of the recent advances in RF front-end technology, alongside physical layer transmission schemes that could be employed for millimeter-wave soldier-mounted radio. The operation of a hypothetical millimeter-wave soldier-to-soldier communications system that makes use of smart antenna technology is also described.
Resumo:
The rate of species loss is increasing on a global scale and predators are most at risk from human-induced extinction. The effects of losing predators are difficult to predict, even with experimental single species removals, because different combinations of species interact in unpredictable ways. We tested the effects of the loss of groups of common predators on herbivore and algal assemblages in a model benthic marine system. The predator groups were fish, shrimp and crabs. Each group was represented by at least two characteristic species based on data collected at local field sites. We examined the effects of the loss of predators while controlling for the loss of predator biomass. The identity, not the number of predator groups, affected herbivore abundance and assemblage structure. Removing fish led to a large increase in the abundance of dominant herbivores, such as Ampithoids and Caprellids. Predator identity also affected algal assemblage structure. It did not, however, affect total algal mass. Removing fish led to an increase in the final biomass of the least common taxa (red algae) and reduced the mass of the dominant taxa (brown algae). This compensatory shift in the algal assemblage appeared to facilitate the maintenance of a constant total algal biomass. In the absence of fish, shrimp at higher than ambient densities had a similar effect on herbivore abundance, showing that other groups could partially compensate for the loss of dominant predators. Crabs had no effect on herbivore or algal populations, possibly because they were not at carrying capacity in our experimental system. These findings show that contrary to the assumptions of many food web models, predators cannot be classified into a single functional group and their role in food webs depends on their identity and density in 'real' systems and carrying capacities.
Resumo:
Continuing achievements in hardware technology are bringing ubiquitous computing closer to reality. The notion of a connected, interactive and autonomous environment is common to all sensor networks, biosystems and radio frequency identification (RFID) devices, and the emergence of significant deployments and sophisticated applications can be expected. However, as more information is collected and transmitted, security issues will become vital for such a fully connected environment. In this study the authors consider adding security features to low-cost devices such as RFID tags. In particular, the authors consider the implementation of a digital signature architecture that can be used for device authentication, to prevent tag cloning, and for data authentication to prevent transmission forgery. The scheme is built around the signature variant of the cryptoGPS identification scheme and the SHA-1 hash function. When implemented on 130 nm CMOS the full design uses 7494 gates and consumes 4.72 mu W of power, making it smaller and more power efficient than previous low-cost digital signature designs. The study also presents a low-cost SHA-1 hardware architecture which is the smallest standardised hash function design to date.