942 resultados para Weather simulations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. Weather forecasts using multiple NWPs from various weather centres implemented on catchment hydrology can provide significantly improved early flood warning. The availability of global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a new opportunity for the development of state-of-the-art early flood forecasting systems. This paper presents a case study using the TIGGE database for flood warning on a meso-scale catchment (4062 km2) located in the Midlands region of England. For the first time, a research attempt is made to set up a coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE database. The study shows that precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial precipitation variability on such a comparatively small catchment, which indicates need to improve NWPs resolution and/or disaggregating techniques to narrow down the spatial gap between meteorology and hydrology. The spread of discharge forecasts varies from centre to centre, but it is generally large and implies a significant level of uncertainties. Nevertheless, the results show the TIGGE database is a promising tool to forecast flood inundation, comparable with that driven by raingauge observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents an evaluation of the size and strength of convective updraughts in high-resolution simulations by the UK Met Office Unified Model (UM). Updraught velocities have been estimated from range–height indicator (RHI) Doppler velocity measurements using the Chilbolton advanced meteorological radar, as part of the Dynamical and Microphysical Evolution of Convective Storms (DYMECS) project. Based on mass continuity and the vertical integration of the observed radial convergence, vertical velocities tend to be underestimated for convective clouds due to the undetected cross-radial convergence. Velocity fields from the UM at a resolution corresponding to the radar observations are used to scale such estimates to mitigate the inherent biases. The analysis of more than 100 observed and simulated storms indicates that the horizontal scale of updraughts in simulations tend to decrease with grid length; the 200 m grid length agreed most closely with the observations. Typical updraught mass fluxes in the 500 m grid length simulations were up to an order of magnitude greater than observed, and greater still in the 1.5 km grid length simulations. The effect of increasing the mixing length in the sub-grid turbulence scheme depends on the grid length. For the 1.5 km simulations, updraughts were weakened though their horizontal scale remained largely unchanged. Progressively more so for the sub-kilometre grid lengths, updraughts were broadened and intensified; horizontal scale was now determined by the mixing length rather than the grid length. In general, simulated updraughts were found to weaken too quickly with height. The findings were supported by the analysis of the widths of reflectivity patterns in both the simulations and observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of the Sun’s corona during the space era have led to a picture of relatively constant, but cyclically varying solar output and structure. Longer-term, more indirect measurements, such as from 10Be, coupled by other albeit less reliable contemporaneous reports, however, suggest periods of significant departure from this standard. The Maunder Minimum was one such epoch where: (1) sunspots effectively disappeared for long intervals during a 70 yr period; (2) eclipse observations suggested the distinct lack of a visible K-corona but possible appearance of the F-corona; (3) reports of aurora were notably reduced; and (4) cosmic ray intensities at Earth were inferred to be substantially higher. Using a global thermodynamic MHD model, we have constructed a range of possible coronal configurations for the Maunder Minimum period and compared their predictions with these limited observational constraints. We conclude that the most likely state of the corona during—at least—the later portion of the Maunder Minimum was not merely that of the 2008/2009 solar minimum, as has been suggested recently, but rather a state devoid of any large-scale structure, driven by a photospheric field composed of only ephemeral regions, and likely substantially reduced in strength. Moreover, we suggest that the Sun evolved from a 2008/2009-like configuration at the start of the Maunder Minimum toward an ephemeral-only configuration by the end of it, supporting a prediction that we may be on the cusp of a new grand solar minimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weather and climate model simulations of the West African Monsoon (WAM) have generally poor representation of the rainfall distribution and monsoon circulation because key processes, such as clouds and convection, are poorly characterized. The vertical distribution of cloud and precipitation during the WAM are evaluated in Met Office Unified Model simulations against CloudSat observations. Simulations were run at 40-km and 12-km horizontal grid length using a convection parameterization scheme and at 12-km, 4-km, and 1.5-km grid length with the convection scheme effectively switched off, to study the impact of model resolution and convection parameterization scheme on the organisation of tropical convection. Radar reflectivity is forward-modelled from the model cloud fields using the CloudSat simulator to present a like-with-like comparison with the CloudSat radar observations. The representation of cloud and precipitation at 12-km horizontal grid length improves dramatically when the convection parameterization is switched off, primarily because of a reduction in daytime (moist) convection. Further improvement is obtained when reducing model grid length to 4 km or 1.5 km, especially in the representation of thin anvil and mid-level cloud, but three issues remain in all model configurations. Firstly, all simulations underestimate the fraction of anvils with cloud top height above 12 km, which can be attributed to too low ice water contents in the model compared to satellite retrievals. Secondly, the model consistently detrains mid-level cloud too close to the freezing level, compared to higher altitudes in CloudSat observations. Finally, there is too much low-level cloud cover in all simulations and this bias was not improved when adjusting the rainfall parameters in the microphysics scheme. To improve model simulations of the WAM, more detailed and in-situ observations of the dynamics and microphysics targeting these non-precipitating cloud types are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weather is frequently used in music to frame events and emotions, yet quantitative analyses are rare. From a collated base set of 759 weather-related songs, 419 were analysed based on listings from a karaoke database. This article analyses the 20 weather types described, frequency of occurrence, genre, keys, mimicry, lyrics and songwriters. Vocals were the principal means of communicating weather: sunshine was the most common, followed by rain, with weather depictions linked to the emotions of the song. Bob Dylan, John Lennon and Paul McCartney wrote the most weather-related songs, partly following their experiences at the time of writing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study has investigated serial (temporal) clustering of extra-tropical cyclones simulated by 17 climate models that participated in CMIP5. Clustering was estimated by calculating the dispersion (ratio of variance to mean) of 30 December-February counts of Atlantic storm tracks passing nearby each grid point. Results from single historical simulations of 1975-2005 were compared to those from historical ERA40 reanalyses from 1958-2001 ERA40 and single future model projections of 2069-2099 under the RCP4.5 climate change scenario. Models were generally able to capture the broad features in reanalyses reported previously: underdispersion/regularity (i.e. variance less than mean) in the western core of the Atlantic storm track surrounded by overdispersion/clustering (i.e. variance greater than mean) to the north and south and over western Europe. Regression of counts onto North Atlantic Oscillation (NAO) indices revealed that much of the overdispersion in the historical reanalyses and model simulations can be accounted for by NAO variability. Future changes in dispersion were generally found to be small and not consistent across models. The overdispersion statistic, for any 30 year sample, is prone to large amounts of sampling uncertainty that obscures the climate change signal. For example, the projected increase in dispersion for storm counts near London in the CNRMCM5 model is 0.1 compared to a standard deviation of 0.25. Projected changes in the mean and variance of NAO are insufficient to create changes in overdispersion that are discernible above natural sampling variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent work has shown that both the amplitude of upper-level Rossby waves and the tropopause sharpness decrease with forecast lead time for several days in some operational weather forecast systems. In this contribution, the evolution of error growth in a case study of this forecast error type is diagnosed through analysis of operational forecasts and hindcast simulations. Potential vorticity (PV) on the 320-K isentropic surface is used to diagnose Rossby waves. The Rossby-wave forecast error in the operational ECMWF high-resolution forecast is shown to be associated with errors in the forecast of a warm conveyor belt (WCB) through trajectory analysis and an error metric for WCB outflows. The WCB forecast error is characterised by an overestimation of WCB amplitude, a location of the WCB outflow regions that is too far to the southeast, and a resulting underestimation of the magnitude of the negative PV anomaly in the outflow. Essentially the same forecast error development also occurred in all members of the ECMWF Ensemble Prediction System and the Met Office MOGREPS-15 suggesting that in this case model error made an important contribution to the development of forecast error in addition to initial condition error. Exploiting this forecast error robustness, a comparison was performed between the realised flow evolution, proxied by a sequence of short-range simulations, and a contemporaneous forecast. Both the proxy to the realised flow and the contemporaneous forecast a were produced with the Met Office Unified Model enhanced with tracers of diabatic processes modifying potential temperature and PV. Clear differences were found in the way potential temperature and PV are modified in the WCB between proxy and forecast. These results demonstrate that differences in potential temperature and PV modification in the WCB can be responsible for forecast errors in Rossby waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Madden-Julian oscillation (MJO) is a convectively coupled 30-70 day (intraseasonal) tropical atmospheric mode that drives variations in global weather, but which is poorly simulated in most atmospheric general circulation models. Over the past two decades, field campaigns and modeling experiments have suggested that tropical atmosphere-ocean interactions may sustain or amplify the pattern of enhanced and suppressed atmospheric convection that defines the MJO, and encourage its eastward propagation through the Indian and Pacific Oceans. New observations collected during the past decade have advanced our understand of the ocean response to atmospheric MJO forcing and the resulting intraseasonal sea surface temperature (SST) fluctuations. Numerous modeling studies have revealed a considerable impact of the mean state on MJO ocean-atmosphere coupled processes, as well as the importance of resolving the diurnal cycle of atmosphere--upper-ocean interactions. New diagnostic methods provide insight to atmospheric variability and physical processes associated with the MJO, but offer limited insight on the role of ocean feedbacks. Consequently, uncertainty remains concerning the role of the ocean in MJO theory. Our understanding of how atmosphere-ocean coupled processes affect the MJO can be improved by collecting observations in poorly sampled regions of MJO activity, assessing oceanic and atmospheric drivers of surface fluxes, improving the representation of upper-ocean mixing in coupled-model simulations, designing model experiments that minimize mean-state differences, and developing diagnostic tools to evaluate the nature and role of coupled ocean-atmosphere processes over the MJO cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office’s (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. Method The prototype health forecasting alert system introduces an “impact vs likelihood matrix” for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. Conclusions The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations through the minimisation of a least-squares objective function, which is constrained by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR) in this thesis as it assumes the model is perfect. Relaxing this assumption gives rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation problem with more degrees of freedom. We consider two wc4DVAR formulations in this thesis, the model error formulation and state estimation formulation. The 4DVAR objective function is traditionally solved using gradient-based iterative methods. The principle method used in Numerical Weather Prediction today is the Gauss-Newton approach. This method introduces a linearised `inner-loop' objective function, which upon convergence, updates the solution of the non-linear `outer-loop' objective function. This requires many evaluations of the objective function and its gradient, which emphasises the importance of the Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the degree of convexity of the objective function, while also indicating the difficulty one may encounter while iterative solving 4DVAR. The condition number of the Hessian is an appropriate measure for the sensitivity of the problem to input data. The condition number can also indicate the rate of convergence and solution accuracy of the minimisation algorithm. This thesis investigates the sensitivity of the solution process minimising both wc4DVAR objective functions to the internal assimilation parameters composing the problem. We gain insight into these sensitivities by bounding the condition number of the Hessians of both objective functions. We also precondition the model error objective function and show improved convergence. We show that both formulations' sensitivities are related to error variance balance, assimilation window length and correlation length-scales using the bounds. We further demonstrate this through numerical experiments on the condition number and data assimilation experiments using linear and non-linear chaotic toy models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predictability of high impact weather events on multiple time scales is a crucial issue both in scientific and socio-economic terms. In this study, a statistical-dynamical downscaling (SDD) approach is applied to an ensemble of decadal hindcasts obtained with the Max-Planck-Institute Earth System Model (MPI-ESM) to estimate the decadal predictability of peak wind speeds (as a proxy for gusts) over Europe. Yearly initialized decadal ensemble simulations with ten members are investigated for the period 1979–2005. The SDD approach is trained with COSMO-CLM regional climate model simulations and ERA-Interim reanalysis data and applied to the MPI-ESM hindcasts. The simulations for the period 1990–1993, which was characterized by several windstorm clusters, are analyzed in detail. The anomalies of the 95 % peak wind quantile of the MPI-ESM hindcasts are in line with the positive anomalies in reanalysis data for this period. To evaluate both the skill of the decadal predictability system and the added value of the downscaling approach, quantile verification skill scores are calculated for both the MPI-ESM large-scale wind speeds and the SDD simulated regional peak winds. Skill scores are predominantly positive for the decadal predictability system, with the highest values for short lead times and for (peak) wind speeds equal or above the 75 % quantile. This provides evidence that the analyzed hindcasts and the downscaling technique are suitable for estimating wind and peak wind speeds over Central Europe on decadal time scales. The skill scores for SDD simulated peak winds are slightly lower than those for large-scale wind speeds. This behavior can be largely attributed to the fact that peak winds are a proxy for gusts, and thus have a higher variability than wind speeds. The introduced cost-efficient downscaling technique has the advantage of estimating not only wind speeds but also estimates peak winds (a proxy for gusts) and can be easily applied to large ensemble datasets like operational decadal prediction systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 Global Climate Models (GCMs) produce a wide range of simulated SIT in the historical period (1979–2014) and exhibit various biases when compared with the Pan-Arctic Ice Ocean Modelling and Assimilation System (PIOMAS) sea ice reanalysis. We present a new method to constrain such GCM simulations of SIT via a statistical bias correction technique. The bias correction successfully constrains the spatial SIT distribution and temporal variability in the CMIP5 projections whilst retaining the climatic fluctuations from individual ensemble members. The bias correction acts to reduce the spread in projections of SIT and reveals the significant contributions of climate internal variability in the first half of the century and of scenario uncertainty from mid-century onwards. The projected date of ice-free conditions in the Arctic under the RCP8.5 high emission scenario occurs in the 2050s, which is a decade earlier than without the bias correction, with potentially significant implications for stakeholders in the Arctic such as the shipping industry. The bias correction methodology developed could be similarly applied to other variables to reduce spread in climate projections more generally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We revisit the issue of sensitivity to initial flow and intrinsic variability in hot-Jupiter atmospheric flow simulations, originally investigated by Cho et al. (2008) and Thrastarson & Cho (2010). The flow in the lower region (~1 to 20 MPa) `dragged' to immobility and uniform temperature on a very short timescale, as in Liu & Showman (2013), leads to effectively a complete cessation of variability as well as sensitivity in three-dimensional (3D) simulations with traditional primitive equations. Such momentum (Rayleigh) and thermal (Newtonian) drags are, however, ad hoc for 3D giant planet simulations. For 3D hot-Jupiter simulations, which typically already employ strong Newtonian drag in the upper region, sensitivity is not quenched if only the Newtonian drag is applied in the lower region, without the strong Rayleigh drag: in general, both sensitivity and variability persist if the two drags are not applied concurrently in the lower region. However, even when the drags are applied concurrently, vertically-propagating planetary waves give rise to significant variability in the ~0.05 to 0.5 MPa region, if the vertical resolution of the lower region is increased (e.g. here with 1000 layers for the entire domain). New observations on the effects of the physical setup and model convergence in ‘deep’ atmosphere simulations are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piriformospora indica (Sebacinaceae) is a cultivable root endophytic fungus. It colonises the roots of a wide range of host plants. In many settings colonisation promotes host growth, increases yield and protects the host from fungal diseases. We evaluated the effect of P. indica on Fusarium head blight (FHB) disease of winter (cv. Battalion) and spring (cv. Paragon, Mulika, Zircon, Granary, KWS Willow and KWS Kilburn) wheat and consequent contamination by the mycotoxin deoxynivalenol (DON) under UK weather conditions. Interactions of P. indica with an arbuscular mycorrhizal fungus (Funneliformis mosseae), fungicide application (Aviator Xpro) and low and high fertiliser levels were considered. P. indica application reduced FHB disease severity and incidence by 70%. It decreased mycotoxin DON concentration of winter and spring wheat samples by 70% and 80% respectively. P. indica also increased above ground biomass, 1000 grain weight and total grain weight. P. indica reduced disease severity and increased yield in both high and low fertiliser levels. The effect of P. indica was compatible with F. mosseae and foliar fungicide application. P. indica did not have any effects on plant tissue nutrients. These results suggest that P. indica might be useful in biological control of Fusarium diseases of wheat.