997 resultados para Wave Prediction
Resumo:
Evaluation of the potential for remote sensing to detect a relationship between wave action factors and plant re-establishment after a habitat enhancement at Lake Kissimmee, Florida. Using Geographic Information Systems (GIS) and remote sensing, wave action factors were found to be inversely related to the probability of plant re-establishment. However, correlation of wave action factors with areal coverage of aquatic plants based on field measurements, were unable to detect a significant relationship. Other factors aside from wave action, including littoral slope and the presence of offshore vegetation, may have influenced plant re-establishment in these sites. Remote sensing techniques may be useful to detect large changes in plants communities, however small changes in plant coverages may not be detectable using this technique.
Resumo:
Offshore pipelines are always trenched into seabed to reduce wave-induced forces and thereby to enhance their stability. The trenches are generally backfilled either by in-site sediments or by depositing selected backfill materials over the pipeline from bottom-dump barge. The actual waves in shallow water zone are always characterized as nonlinear. The proper evaluation of the wave-induced pressures upon pipeline is important for coastal geotechnical engineers. However, most previous investigations of the wave–seabed–pipe interaction problem have been concerned only with a single sediment layer and linear wave loading. In this paper, based on Biot’s consolidation theory, a two-dimensional finite element model is developed to investigate non-linear wave induced pore pressures around trenched pipeline. The influences of the permeability of backfill soil and the geometry profiles of trenches upon soil responses around pipeline are studied respectively.
Resumo:
The paper presents a reasonable analysis for dynamic response and failure process of a plane multi-layered media, which are subjected to a blast loading. This blast loading is induced by a cylindric explosive put on the center of top surface of the layered media. With the help of numerical simulation technique provided by LS-DYNA software, the whole process of explosion wave propagation and attenuation can be revealed. The feature of local failure around the blasting site is also discussed in some detail. Our focus will be on the explosion wave attenuation for the hard-soft-hard sandwich layers. As seen in the paper, the computational results are delivered in a feasible way by comparing with experimental data.
Resumo:
An optical diagnostic system consisting of Michelson interferometer with image processor has been developed for study of the kinetics of thermal capillary convection and buoyancy convection. This optical interferometer has been used to observe and measure surface deformation and surface wave of capillary convection and buoyancy convection in a rectangular cavity with different temperature’s sidewalls. Fourier transformation is used to image processing. The quantitative results of surface deformation and surface wave have been calculated from the interference fringe pattern. With the increasing of temperature gradient, the liquid surface slant gradually. It’s deformation has been calculated, which is related directly with temperature gradient. This is one of the characters introducing convection. Another interesting phenomenon is the inclining direction, which is different when the liquid layer is thin or thick. When the liquid layer is thin, convection is mainly controlled by thermocapillary effect. However, When the liquid layer is thick, convection is mainly controlled by buoyancy effect. Surface deformation in the present experiment are more and more declining in this process. The present experiment proved that surface deformation appears before the appearance of surface wave on fluid convection, it is related with temperature gradient, and the height of liquid layer, and lies on capillary convection and buoyancy convection. The present experiment also demonstrates that the amplitude of surface wave of thermocapillary-buoyancy convection is much smaller than surface deformation, the wave is covered by deformation.
Resumo:
As defined, the modeling procedure is quite broad. For example, the chosen compartments may contain a single organism, a population of organisms, or an ensemble of populations. A population compartment, in turn, could be homogeneous or possess structure in size or age. Likewise, the mathematical statements may be deterministic or probabilistic in nature, linear or nonlinear, autonomous or able to possess memory. Examples of all types appear in the literature. In practice, however, ecosystem modelers have focused upon particular types of model constructions. Most analyses seem to treat compartments which are nonsegregated (populations or trophic levels) and homogeneous. The accompanying mathematics is, for the most part, deterministic and autonomous. Despite the enormous effort which has gone into such ecosystem modeling, there remains a paucity of models which meets the rigorous &! validation criteria which might be applied to a model of a mechanical system. Most ecosystem models are short on prediction ability. Even some classical examples, such as the Lotka-Volterra predator-prey scheme, have not spawned validated examples.
Resumo:
In this paper the Deflagration to Detonation Transition (DDT) process of gaseous H-2-O-2 mixture and Mach reflection of gaseous detonation wave on a wedge have been conducted experimentally. The cellular pattern of DDT process and Mach reflection were obtained from experiments with wedge angle theta = 10(0) similar to 40(0) and initial pressure of gaseous mixture 16kPa similar to 26.7kPa. The 2-D numerical simulations of DDT process and Mach reflection of detonation wave were performed by using the simplified ZND model and improved space-time conservation element and solution element (CE/SE) method. The numerical cellular structures were compared with the cellular patterns of soot track. Compared results were shown that it is satisfactory. The characteristic comparisons on Mach reflection of air shock wave and detonation wave were carried also out and their differences were given.