980 resultados para Virus variants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As measles virus causes subacute sclerosing panencephalitis and measles inclusion body encephalitis due to its ability to establish human persistent infection, without symptoms for the time between the acute infection and the onset of clinical symptoms, it has been the paradigm for a long term persistent as opposed to chronic infection by an RNA virus. We have reviewed the mechanisms of persistence of the virus and discuss specific mutations associated with CNS infection affecting the matrix and fusion protein genes. These are placed in the context of our current understanding of the viral replication cycle. We also consider the proposed mechanisms of persistence of the virus in replicating cell cultures and conclude that no general mechanistic model can be derived from our current state of knowledge. Finally, we indicate how reverse genetics approaches and the use of mouse models with specific knock-out and knock-in modifications can further our understanding of measles virus persistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The complement factor H (CFH) gene has been recently confirmed to play an essential role in the development of age-related macular degeneration (AMD). There are conflicting reports of its role in coronary heart disease. This study was designed to investigate if, using a family-based approach, there was an association between genetic variants of the CFH gene and risk of early-onset coronary heart disease. Methods: We evaluated 6 SNPs and 5 common haplotypes in the CFH gene amongst 1494 individuals in 580 Irish families with at least one member prematurely affected with coronary heart disease. Genotypes were determined by multiplex SNaPshot technology. Results: Using the TDT/S-TDT test, we did not find an association between any of the individual SNPs or any of the 5 haplotypes and early-onset coronary heart disease. Conclusion: In this family-based study, we found no association between the CFH gene and early-onset coronary heart disease. © 2007 Meng et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The order Nidovirales comprises viruses from the families Coronaviridae (genera Coronavirus and Torovirus), Roniviridae (genus Okavirus), and Arteriviridae (genus Arterivirus). In this study, we characterized White bream virus (WBV), a bacilliform plus-strand RNA virus isolated from fish. Analysis of the nucleotide sequence, organization, and expression of the 26.6-kb genome provided conclusive evidence for a phylogenetic relationship between WBV and nidoviruses. The polycistronic genome of WBV contains five open reading frames (ORFs), called ORF1a, -1b, -2, -3, and -4. In WBV-infected cells, three subgenomic RNAs expressing the structural proteins S, M, and N were identified. The subgenomic RNAs were revealed to share a 42-nucleotide, 5' leader sequence that is identical to the 5'-terminal genome sequence. The data suggest that a conserved nonanucleotide sequence, CA(G/A)CACUAC, located downstream of the leader and upstream of the structural protein genes acts as the core transcription-regulating sequence element in WBV. Like other nidoviruses with large genomes (>26 kb), WBV encodes in its ORF1b an extensive set of enzymes, including putative polymerase, helicase, ribose methyltransferase, exoribonuclease, and endoribonuclease activities. ORF1a encodes several membrane domains, a putative ADP-ribose 1"-phosphatase, and a chymotrypsin-like serine protease whose activity was established in this study. Comparative sequence analysis revealed that WBV represents a separate cluster of nidoviruses that significantly diverged from toroviruses and, even more, from coronaviruses, roniviruses, and arteriviruses. The study adds to the amazing diversity of nidoviruses and appeals for a more extensive characterization of nonmammalian nidoviruses to better understand the evolution of these largest known RNA viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review focuses on the monophyletic group of animal RNA viruses united in the order Nidovirales. The order includes the distantly related coronaviruses, toroviruses, and roniviruses, which possess the largest known RNA genomes (from 26 to 32 kb) and will therefore be called ‘large’ nidoviruses in this review. They are compared with their arterivirus cousins, which also belong to the Nidovirales despite having a much smaller genome (13–16 kb). Common and unique features that have been identified for either large or all nidoviruses are outlined. These include the nidovirus genetic plan and genome diversity, the composition of the replicase machinery and virus particles, virus-specific accessory genes, the mechanisms of RNA and protein synthesis, and the origin and evolution of nidoviruses with small and large genomes. Nidoviruses employ single-stranded, polycistronic RNA genomes of positive polarity that direct the synthesis of the subunits of the replicative complex, including the RNA-dependent RNA polymerase and helicase. Replicase gene expression is under the principal control of a ribosomal frameshifting signal and a chymotrypsin-like protease, which is assisted by one or more papain-like proteases. A nested set of subgenomic RNAs is synthesized to express the 3'-proximal ORFs that encode most conserved structural proteins and, in some large nidoviruses, also diverse accessory proteins that may promote virus adaptation to specific hosts. The replicase machinery includes a set of RNA-processing enzymes some of which are unique for either all or large nidoviruses. The acquisition of these enzymes may have improved the low fidelity of RNA replication to allow genome expansion and give rise to the ancestors of small and, subsequently, large nidoviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replicase polyproteins, pp1a and pp1ab, of porcine Transmissible gastroenteritis virus (TGEV) have been predicted to be cleaved by viral proteases into 16 non-structural proteins (nsp). Here, enzymic activities residing in the amino-proximal region of nsp3, the largest TGEV replicase processing product, were characterized. It was shown, by in vitro translation experiments and protein sequencing, that the papain-like protease 1, PL1pro, but not a mutant derivative containing a substitution of the presumed active-site nucleophile, Cys1093, cleaves the nsp2|nsp3 site at 879Gly|Gly880. By using an antiserum raised against the pp1a/pp1ab residues 526–713, the upstream processing product, nsp2, was identified as an 85 kDa protein in TGEV-infected cells. Furthermore, PL1pro was confirmed to be flanked at its C terminus by a domain (called X) that mediates ADP-ribose 1''-phosphatase activity. Expression and characterization of a range of bacterially expressed forms of this enzyme suggest that the active X domain comprises pp1a/pp1ab residues Asp1320–Ser1486.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The arterivirus equine arteritis virus nonstructural protein 10 (nsp10) has previously been predicted to contain a Zn finger structure linked to a superfamily 1 (SF1) helicase domain. A recombinant form of nsp10, MBP-nsp10, was produced in Escherichia coli as a fusion protein with the maltose-binding protein. The protein was partially purified by affinity chromatography and shown to have ATPase activity that was strongly stimulated by poly(dT), poly(U), and poly(dA) but not by poly(G). The protein also had both RNA and DNA duplex-unwinding activities that required the presence of 5' single-stranded regions on the partial-duplex substrates, indicating a 5'-to-3' polarity in the unwinding reaction. Results of this study suggest a close functional relationship between the arterivirus nsp10 and the coronavirus helicase, for which NTPase and duplex-unwinding activities were recently demonstrated. In a number of biochemical properties, both arterivirus and coronavirus SF1 helicases differ significantly from the previously characterized RNA virus SF1 and SF2 enzymes. Thus, the combined data strongly support the idea that nidovirus helicases may represent a separate group of RNA virus-encoded helicases with distinct properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kipp F, Ziebuhr W, Becker K, Krimmer V, Höbeta N, Peters G, Von Eiff C. Institute of Medical Microbiology, Hospital and Clinics, University of Münster, Germany. A 45 year old man was admitted to hospital with a right sided facial paralysis and three month history of seizures. Computed tomography showed a left temporal mass including both intracerebral and extracerebral structures. Ten years earlier the patient had undergone a neurosurgical intervention in the same anatomical region to treat a subarachnoid haemorrhage. In tissue samples and pus obtained during neurosurgery, Staphylococcus aureus was detected by a 16S rRNA-directed in situ hybridisation technique. Following long term cultivation, small colony variants (SCV) of methicillin resistant S aureus were identified. The patient was treated successfully with a combination of vancomycin and rifampin followed by prolonged treatment with teicoplanin, with no sign of infection on follow up nine months after discharge. This is the first report in which S aureus SCV have been identified as causative organisms in a patient with brain abscess and in which in situ hybridisation has been used to detect S aureus in a clinical specimen containing SCV. Antimicrobial agents such as rifampin which have intracellular activity should be included in treatment of infections caused by S aureus SCV.