975 resultados para Vestibular fold
Resumo:
An effective transcriptional response to redox stimuli is of particular importance for Mycobacterium tuberculosis, as it adapts to the environment of host alveoli and macrophages. The M. tuberculosis a factor sigma(L) regulates the expression of genes involved in cell-wall and polyketide syntheses. sigma(L) interacts with the cytosolic anti-sigma domain of a membrane-associated protein, RslA. Here we demonstrate that RslA binds Zn2+ and can sequester sigma(L) in a reducing environment. In response to an oxidative stimulus, proximal cysteines in the CXXC motif of RslA form a disulfide bond, releasing bound Zn2+. This results in a substantial rearrangement of the sigma(L)/RslA complex, leading to an 8-fold decrease in the affinity of RslA for sigma(L). The crystal structure of the -35-element recognition domain of sigma(L), sigma(L)(4), bound to RslA reveals that RslA inactivates sigma(L) by sterically occluding promoter DNA and RNpolymerase binding sites. The crystal structure further reveals that the cysteine residues that coordinate Zn2+ in RslA are solvent exposed in the complex, thus providing a structural basis for the redox sensitivity of RslA. The biophysical parameters of sigma(L)/RslA interactions provide a template for understanding how variations in the rate of Zn2+ release and associated conformational changes could regulate the activity of a Zn2+-associated anti-sigma factor. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The occurrence in plants of an enzyme system catalyzing the cleavage of uridine has been demonstrated. The enzyme from Phaseolus radiatus was purified about 132-fold with 24% recovery by a combination of procedures involving mild acid treatment, ammonium sulphate fractionation, negative adsorption on calcium phosphate gel and DEAE-cellulose chromatography. The enzyme cleaves uridine to uracil and ribose in the absence of phosphate indicating that the mechanism of cleavage was hydrolytic rather than phosphorolytic. The enzyme is specific to uridine and does not act on other purine and pyrimidine compounds. The enzyme shows maximum activity at pH 7.4 and has a temperature optimum of 45 °. It does not require metal ions for activity. Inhibition of the enzyme by p-chloromercuribenzoate as well as N-ethylmaleimide and the reversal of p-chloromercuribenzoate inhibition by sulfhydryl agents indicate the probable involvement of readily oxidizable sulfhydryl groups in enzyme activity.
Resumo:
An enzyme which catalyzes the oxidative conversion of o-aminophenol to 2-amino-3-H-isophenoxazin-3-one has been purified 396-fold by using standard fractionation procedures. The enzyme is specific for o-aminophenol and has pH and temperature optima at 6.2 and 40 °, respectively. It is insensitive to metal chelating agents but is inhibited by several reducing substances. There is no cofactor or metal ion requirement for the reaction. A competitive type of inhibition was observed with structural analogs such as anthranilic acid and 3-hydroxyanthranilic acid. There are no free sulfhydryl groups in the enzyme, but preincubation of the enzyme with substrate or substrate analogs resulted in the liberation of titratable free sulfhydryl groups. The mechanism of biosynthesis of isophenoxazine ring is discussed.
Resumo:
Beta-hairpin structures have been crystallographically characterized only in very short acyclic peptides, in contrast to helices. The structure of the designed beta-hairpin, t-butoxycarbonyl-Leu-Val-Val-D-Pro-Gly-Leu-Val-Val-OMe in crystals is described. The two independent molecules of the octapeptide fold into almost ideal beta-hairpin conformations with the central D-Pro-Gly segment adopting a Type II' beta-turn conformation. The definitive characterization of a beta-hairpin has implications for de novo peptide and protein design, particularly for the development of three- and four-stranded beta-sheets.
Resumo:
The occurrence of an enzyme hydrolyzing flavine adenine dinucleotide (FAD) was demonstrated in a number of seed extracts. The enzyme from Phaseolus radiatus was purified 104-fold by fractionation with ammonium sulfate and ethanol and by negative adsorption on alumina Cγ gel. The enzyme cleaves the POP bond of FAD to yield flavine mononucleotide and adenosine monophosphate. When reduced glutathione is added to the enzyme, it cleaves FAD at the COP bond to yield riboflavine, adenosine, and pyrophosphate, Both the activities are optimal at a pH of 7.2 and at a temperature of 37 . The Km for both the activities is 1.65 × 10−5 M. The stoichiometry and the identity of the products of both the treated and untreated enzyme were established. The untreated enzyme was not inhibited by pCMB or arsenite, but the treated enzyme was sensitive to both these inhibitors. The inhibition by pCMB could be reversed by monothiols and the inhibition by arsenite by dithiols.
Resumo:
Acetohydroxy acid isomerase (AHA isomerase) was purified about 110-fold and separated from reductase and acetohydroxy acid isomeroreductase. The AHA isomerase was found to be homogeneous by agar and polyacrylamide gel electrophoreses at different pHs. The properties of AHA isomerase have been studied. The purified enzyme showed requirement for Image -ascorbic acid and sulfate ions for its activity. Synthetic ascorbic acid sulfate could replace Image -ascorbic acid and sulfate. α-Methyllactate and α-ketoisovalerate were found to inhibit AHA isomerase activity competitively whereas Image -valine and Image -isoleucine had no significant inhibitory effect. p-Hydroxymercuribenzoate inhibited AHA isomerase activity and the inhibition was reversed by β-mercaptoethanol.
Resumo:
The enzymic hydrolysis of riboflavin to lumichrome and ribitol by extracts of Crinum longifolium bulbs has been demonstrated. The enzyme was purified 48-fold by ZnSO4 treatment and ethanol fractionation, and concentrated by using Sephadex G-25. After establishing the stoichiometry of the reaction, the general properties of the purified enzyme were studied. The enzyme showed maximal activity at pH 7·5, and it had a requirement for reduced glutathione which could be replaced by cysteine or ascorbic acid. Mg2+ and Li+ activated the enzyme. The reaction was highly specific to riboflavin and was competitively inhibited by riboflavin 5′-phosphate.
Resumo:
An enzyme system which catalysed the conversion of anthranilic acid to catechol has been purified 20-fold from a cell-free leaf extract of Tecoma stans. The optimum substrate concentration was 10−3 M and optimum temperature for the reaction was 45°. The presence of a multi-enzyme system was inferred from inhibition studies. The formation of catechol was inhibited by Mg2+, Zn2+, and Co2+ ions, whereas anthranilic acid disappearance was not affected to the same extent. The effect of metal chelating agents like EDTA, cyanide and pyrophosphate showed a similar trend. PCMB inhibited catechol formation but had no effect on anthranilic acid disappearance. The reaction was not inhibited by catalase, nor was it activated by peroxide-donating systems. This ruled out the possibility of peroxidative type of reaction. The overall reaction is markedly activated by NADPH and THFA. This multi-enzyme was separated into three different components, by fractionation with Alumina Cγ and calcium phosphate gels. The overall reaction catalysed by these components can be represented as anthranilic acid→3-hydroxy anthranilic acid→o-aminophenol→catechol.
A study of the purification and properties of tryptophan synthetase of Bengal gram (Cicer arietinum)
Resumo:
Active preparations of tryptophan synthetase were obtained from Bengal gram (Cicer arietinum) by the following procedure: (1) precipitation of inactive materials by manganous sulfate, (2) Adsorption of impurities on Alumina Cγ, (3) Adsorption of tryptophan synthetase on tricalcium phosphate gel, removal of inert protein from the gel by treatment with phosphate buffer (pH 7.2), and selective elution of the enzyme by 0.15 M phosphate buffer pH 7.2 containing 10% ammonium sulfate and 10−3 M serine. A 220-fold purification of the enzyme with 44% recovery of the activity was achieved. The pH optimum, effect of temperature, and substrate concentration and other properties of the purified enzyme have been studied in detail. Only the Image -isomer of serine takes part in the reaction. The Km values for indole, Image -serine, and Image -serine were calculated to be 0.66, 4.1, and 8.6 × 10−4 M, respectively. A kinetic study of the inhibition of tryptophan synthetase by indole-propionic acid has shown that it is of a competitive type. It has been demonstrated for the first time that 4-nitro-salicylaldehyde can replace pyridoxal phosphate as a coenzyme for the tryptophan synthetase reaction.
Studies of the enzymes involved in nicotinamide adenine dinucleotide metabolism in Aspergillus niger
Resumo:
The enzyme nicotinamide amidase (nicotinamide amidohydrolase) was purified 57-fold from Aspergillus niger. The purified preparation was specific towards its substrate nicotinamide and did not deamidate NADP, NAD, NMN, N′-methyl nicotinamide, asparagine, glutamine, benzamide, α-naphthaleneamide and indoleacetamide. The asparagine, glutamine, benzamide, α-naphthaleneamide and indoleacetamide.vThe optimum pH was found to be 7.5. Temperature optimum was 40°. It had a Km value of 6.504 · 10−4 M towards nicotinamide. The enzyme exhibited Mg2+ ion requirement for its optimum activity. NAD-glycohydrolase (EC 3.2.2.5) was purified 109-fold from the mold. A. niger. The enzyme preparation was active only towards NAD and NADP and did not attack NMN, N′-methylnicotinamide and NADH. The Km value for NAD was found to be 7.693 · 10−6 M. The enzyme did not require any metal ion for its activity. It is suggested that A. niger will serve a better source for a large scale preparation of NAD-glycohydrolase than the Neurospora mold. The biological role of both NAD-glycohydrolase and nicotinamide amidase in the regulation of cellular NAD level has been discussed. It is, further, observed that NAD did not exert its feedback control on nicotinamide amidase at least in A. niger.
Resumo:
Acetohydroxy acid isomerase (AHA isomerase) was purified about 110-fold and separated from reductase and acetohydroxy acid isomeroreductase. The AHA isomerase was found to be homogeneous by agar and polyacrylamide gel electrophoreses at different pHs. The properties of AHA isomerase have been studied. The purified enzyme showed requirement for l-ascorbic acid and sulfate ions for its activity. Synthetic ascorbic acid sulfate could replace l-ascorbic acid and sulfate. α-Methyllactate and α-ketoisovalerate were found to inhibit AHA isomerase activity competitively whereas l-valine and l-isoleucine had no significant inhibitory effect. p-Hydroxymercuribenzoate inhibited AHA isomerase activity and the inhibition was reversed by β-mercaptoethanol.
Resumo:
The biosynthesis of β-N-oxalyl-l-α,β-diaminopropionic acid (ODAP) the Lathyrus sativus neurotoxin has been found to follow the scheme depicted below: {A figure is presented}. The first reaction is catalysed by oxalyl-CoA synthetase which has properties similar to that of the enzyme in peas. The second reaction is catalysed by another enzyme which is specific to L. sativus and is designated as oxalyl-CoA-α,β-diaminopropionic acid oxalyl transferase. The enzymes have been purified by about 60-fold and their properties studied. A partial resolution of the two enzyme activities has been achieved using CM-sephadex columns.
Resumo:
In my master's thesis I explore the political significance of logging in Papua New Guinea (PNG). In commercial logging the post-colonial state of PNG, its local communities, transnational companies and non-governmental organizations come interestingly together. The central research questions are what forms of political awareness and mobilization does commercial logging bring up in the small scale communities and how – if at all – does logging change the relationship between these communities and the state of PNG. The thesis is based on three months of ethnographic fieldwork conducted in 2007 in a village located in the East New Britain province of PNG. The village, inhabited mainly by the Mengen people, was an interesting case, because logging operations had been conducted in the area with the permission of the people, while on the other hand some villagers had formed a conservation association of their own. Parliamentary elections were also held in PNG during the time of my fieldwork. During my stay in the village I took part in the village life and conducted interviews. In addition to this, much of my material is based on informal discussions with people. On my way to and from the village I also interviewed several Papua New Guinean NGO-workers in the national and provincial capitals. In my thesis I show that environmental conservation in the village is part of a larger attempt to protect local autonomy, culture and the environment, i.e. it is a ”localistic” movement. Locals supporting conservation, as well as those supporting logging, take actively part in national parliamentary as well as local level politics. In my thesis I have attempted to unpack the notion of ”local” by examining internal power relations of the community and describing various lines of thought and opinions that base on local cultural values. Along with this, commercial logging seems also to elicit the role of the state in two-fold way in East New Britain. On the one hand, the government seeks to use logging roads built by logging companies as the basis of its own national infrastructure, even though the company roads are often of manifestably poor quality and short-lived. On the other hand, problems caused by logging, such as land disputes, create a need among local communities for the state and its services. Central themes in my thesis are the local values invested in the environment, as well as the ways in which the locals produce their environment both conceptually as well as physically. As subsistence farmers the locals depend economically on the condition of their environment. However, the value of the environment goes beyond economical questions. For example, the environment holds proof of the history of the community. Conversely, also the state and companies attempt to conceptualize, modify and administer the environment. This is done through processes such as mapping and road building, both crucial political questions in East New Britain. Here the anthropological discussion about space and place, as well as political geography are central. The diverse ways of conceptualizing the environment, as well as logging, cause often disputes about the ownership of land areas. Because of this I discuss local ways of holding the land communally, as well as PNG's land legislation and ways of dispute management. Land tenure and disputes are political questions that the locals have to deal with and in some cases these questions also create a need for the judiciary system of the state. The disputes affect also political activity, which I discuss at some length in my thesis as well. Interestingly, the locals, regardless of their political views and affiliations, establish transnational connections ranging from NGOs to government departments and multinational companies.
Resumo:
Major advances in the treatment of preterm infants have occurred during the last three decades. Survival rates have increased, and the first generations of preterm infants born at very low birth weight (VLBW; less than 1500 g) who profited from modern neonatal intensive care are now in young adulthood. The literature shows that VLBW children achieve on average lower scores on cognitive tests, even after exclusion of individuals with obvious neurosensory deficits. Evidence also exists for an increased risk in VLBW children for various neuropsychiatric disorders such as attention-deficit hyperactivity disorder (ADHD) and related behavioral symptoms. Up till now, studies extending into adulthood are sparse, and it remains to be seen whether these problems persist into adulthood. The aim of this thesis was to study ADHD-related symptoms and cognitive and executive functioning in young adults born at VLBW. In addition, we aimed to study sleep disturbances, known to adversely affect both cognition and attention. We hypothesized that preterm birth at VLBW interferes with early brain development in a way that alters the neuropsychological phenotype; this may manifest itself as ADHD symptoms and impaired cognitive abilities in young adulthood. In this cohort study from a geographically defined region, we studied 166 VLBW adults and 172 term-born controls born from 1978 through 1985. At ages 18 to 27 years, the study participants took part in a clinic study during which their physical and psychological health was assessed in detail. Three years later, 213 of these individuals participated in a follow-up. The current study is part of a larger research project (The Helsinki Study of Very Low Birth Weight Adults), and the measurements of interest for this particular study include the following: 1) The Adult Problem Questionnaire (APQ), a self-rating scale of ADHD-related symptoms in adults; 2) A computerized cognitive test battery designed for population studies (CogState®) which measures core cognitive abilities such as reaction time, working memory, and visual learning; 3) Sleep assessment by actigraphy, the Basic Nordic Sleep Questionnaire, and the Morningness-Eveningness Questionnaire. Actigraphs are wrist-worn accelerometers that separate sleep from wakefulness by registering body movements. Contrary to expectations, VLBW adults as a group reported no more ADHD-related behavioral symptoms than did controls. Further subdivision of the VLBW group into SGA (small for gestational age) and AGA (appropriate for gestational age) subgroups, however, revealed more symptoms on ADHD subscales pertaining to executive dysfunction and emotional instability among those born SGA. Thus, it seems that intrauterine growth retardation (for which SGA served as a proxy) is a more essential predictor for self-perceived ADHD symptoms in adulthood than is VLBW birth as such. In line with observations from other cohorts, the VLBW adults reported less risk-taking behavior in terms of substance use (alcohol, smoking, and recreational drugs), a finding reassuring for the VLBW individuals and their families. On the cognitive test, VLBW adults free from neurosensory deficits had longer reaction times than did term-born peers on all tasks included in the test battery, and lower accuracy on the learning task, with no discernible effect of SGA status over and above the effect of VLBW. Altogether, on a group level, even high-functioning VLBW adults show subtle deficits in psychomotor processing speed, visual working memory, and learning abilities. The sleep studies provided no evidence for differences in sleep quality or duration between the two groups. The VLBW adults were, however, at more than two-fold higher risk for sleep-disordered breathing (in terms of chronic snoring). Given the link between sleep-disordered breathing and health sequelae, these results suggest that VLBW individuals may benefit from an increased awareness among clinicians of this potential problem area. An unexpected finding from the sleep studies was the suggestion of an advanced sleep phase: The VLBW adults went to bed earlier according to the actigraphy registrations and also reported earlier wake-up times on the questionnaire. In further study of this issue in conjunction with the follow-up three years later, the VLBW group reported higher levels of morningness propensity, further corroborating the preliminary findings of an advanced sleep phase. Although the clinical implications are not entirely clear, the issue may be worth further study, since circadian rhythms are closely related to health and well-being. In sum, we believe that increased understanding of long-term outcomes after VLBW, and identification of areas and subgroups that are particularly vulnerable, will allow earlier recognition of potential problems and ultimately lead to improved prevention strategies.
Resumo:
In attempting to determine the nature of the enzyme system mediating the conversion of catechol to diphenylenedioxide 2,3-quinone, in Tecoma leaves, further purification of the enzyme was undertaken. The crude enzyme from Tecoma leaves was processed further by protamine sulfate precipitation, positive adsorption on tricalcium phosphate gel, and elution and chromatography on DEAE-Sephadex. This procedure yielded a 120-fold purified enzyme which stoichiometrically converted catechol to diphenylenedioxide 2,3-quinone. The purity of the enzyme system was assessed by polyacrylamide gel electrophoresis. The approximate molecular weight of the enzyme was assessed as 200,000 by gel filtration on Sephadex G-150. The enzyme functioned optimally at pH 7.1 and at 35 °C. The Km for catechol was determined as 4 × 10−4 Image . The enzyme did not oxidize o-dihydric phenols other than catechol and it did not exhibit any activity toward monohydric and trihydric phenols and flavonoids. Copper-chelating agents did not inhibit the enzyme activity. Copper could not be detected in the purified enzyme preparations. The purified enzyme was not affected by extensive dialysis against copper-complexing agents. It did not show any peroxidase activity and it was not inhibited by catalase. Hydrogen peroxide formation could not be detected during the catalytic reaction. The enzymatic conversion of catechol to diphenylenedioxide 2,3-quinone by the purified Tecoma leaf enzyme was suppressed by such reducing agents as GSH and cysteamine. The purified enzyme was not sensitive to carbon monoxide. It was not inhibited by thiol inhibitors. The Tecoma leaf was found to be localized in the soluble fraction of the cell. Treatment of the purified enzyme with acid, alkali, and urea led to the progressive denaturation of the enzyme.