932 resultados para Verification
Resumo:
We present the first quantitative verification of an amplitude description for systems with (nearly) spontaneously broken isotropy, in particular for the recently discovered abnormal-roll states. We also obtain a conclusive picture of the three-dimensional director configuration in a spatial period doubling phenomenon involving disclination loops. The first observation of two Lifshitz frequencies in electroconvection is reported.
Resumo:
This paper studies a problem of dynamic pricing faced by a retailer with limited inventory, uncertain about the demand rate model, aiming to maximize expected discounted revenue over an infinite time horizon. The retailer doubts his demand model which is generated by historical data and views it as an approximation. Uncertainty in the demand rate model is represented by a notion of generalized relative entropy process, and the robust pricing problem is formulated as a two-player zero-sum stochastic differential game. The pricing policy is obtained through the Hamilton-Jacobi-Isaacs (HJI) equation. The existence and uniqueness of the solution of the HJI equation is shown and a verification theorem is proved to show that the solution of the HJI equation is indeed the value function of the pricing problem. The results are illustrated by an example with exponential nominal demand rate.
Resumo:
The power-handling capabilities of helical resonator filters for space applications are discussed. Emerging difficulties due to the multipaction effects are highlighted. A method is proposed to increase specified power handling without significantly sacrificing the size/quality factor. Experimental verification is attained by means of a fabricated prototype for which measured filter response and multipaction test results are obtained and presented.
Resumo:
While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs) responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research genetic tool in nematodes.
Resumo:
The dynamical Casimir effect (DCE) predicts the generation of photons from the vacuum due to the parametric amplification of the quantum fluctuations of an electromagnetic field. The verification of such an effect is still elusive in optical systems due to the very demanding requirements of its experimental implementation. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way to an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system and allow us to link the detection of the DCE to the Kibble-Zurek mechanism for the production of defects when crossing a continuous phase transition.
Resumo:
This paper explores the roles of science and market devices in the commodification of ‘nature’ and the configuration of flows of speculative capital. It focuses on mineral prospecting and the market for shares in ‘junior’ mining companies. In recent years these companies have expanded the reach of their exploration activities overseas, taking advantage of innovations in exploration methodologies and the liberalisation of fiscal and property regimes in ‘emerging’ mineral rich developing countries. Recent literature has explored how the reconfiguration of notions of ‘risk’ has structured the uneven distribution of rents. It is increasingly evident that neoliberal framing of environmental, political, social and economic risks has set in motion overflows that multinational mining capital had not bargained for (e.g. nationalisation, violence and political resistance). However, the role of ‘geological risk’ in animating flows of mining finance is often assumed as a ‘technical’ given. Yet geological knowledge claims, translated locally, designed to travel globally, assemble heterogeneous elements within distanciated regimes of metrology, valuation and commodity production. This paper explores how knowledge of nature is enrolled within systems of property relations, focusing on the genealogy of the knowledge practices that animate contemporary circuits of speculative mining finance. It argues that the financing of mineral prospecting mobilises pragmatic and situated forms of knowledge rather than actuarially driven calculations that promise predictability. A Canadian public enquiry struck in the wake of scandal associated with Bre-X’s prospecting activities in Indonesia is used to glean insights into the ways in which the construction of a system of public warrant to underpin financial speculation is predicated upon particular subjectivities and the outworking of everyday practices and struggles over ‘value’. Reflection on practical investments in processes of standardisation, rituals of verification and systems of accreditation reveal much about how the materiality of things shape the ways in which regional and global financial circuits are integrated, selectively transforming existing social relations and forms of knowledge production.
Resumo:
In this paper, we present a methodology for implementing a complete Digital Signal Processing (DSP) system onto a heterogeneous network including Field Programmable Gate Arrays (FPGAs) automatically. The methodology aims to allow design refinement and real time verification at the system level. The DSP application is constructed in the form of a Data Flow Graph (DFG) which provides an entry point to the methodology. The netlist for parts that are mapped onto the FPGA(s) together with the corresponding software and hardware Application Protocol Interface (API) are also generated. Using a set of case studies, we demonstrate that the design and development time can be significantly reduced using the methodology developed.
Resumo:
A fiber-optic multichannel correlator/convolver based on a two-dimensional systolic array architecture is described. Experimental verification of processor performance is presented.
Resumo:
A phenomenology of distributed passive intermodulation generation in coplanar waveguide transmission line is presented. The theoretical analysis is based upon the generalised nonlinear transmission line model, which accounts for the coupling of two propagating modes. The case of weak substrate nonlinearity is considered and the model is given qualitative verification through the mapping of passive intermodulation products generated in coplanar waveguide fabricated on a commercial laminate. Implications for future research are discussed. © 2012 IEEE.
Resumo:
Verification of the dynamical Casimir effect (DCE) in optical systems is still elusive due to the very demanding requirements for its experimental implementation. This typically requires very fast changes in the boundary conditions of the problem. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way for an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system and allow us to link the detection of DCE to the Kibble-Zurek mechanism for the production of defects when crossing a continuous phase transition.
Resumo:
Starting from a four-partite photonic hyper-entangled Dicke resource, we report the full tomographic characterization of three-, two-, and one-qubit states obtained by projecting out part of the computational register. The reduced states thus obtained correspond to fidelities with the expected states larger than 87%, therefore certifying the faithfulness of the entanglement-sharing structure within the original four-qubit resource. The high quality of the reduced three-qubit state allows for the experimental verification of the Koashi-Winter relation for the monogamy of correlations within a tripartite state. We show that, by exploiting the symmetries of the three-qubit state obtained upon projection over the four-qubit Dicke resource, such relation can be experimentally fully characterized using only 5 measurement settings. We highlight the limitations of such approach and sketch an experimentally-oriented way to overcome them.
Resumo:
Purpose: In this study the Octavius detector 729 ionization chamber (IC) array with the Octavius 4D phantom was characterized for flattening filter (FF) and flattening filter free (FFF) static and rotational beams. The device was assessed for verification with FF and FFF RapidArc treatment plans.
Methods: The response of the detectors to field size, dose linearity, and dose rate were assessed for 6 MV FF beams and also 6 and 10 MV FFF beams. Dosimetric and mechanical accuracy of the detector array within the Octavius 4D rotational phantom was evaluated against measurements made using semiflex and pinpoint ionization chambers, and radiochromic film. Verification FF and FFF RapidArc plans were assessed using a gamma function with 3%/3 mm tolerances and 2%/2 mm tolerances and further analysis of these plans was undertaken using film and a second detector array with higher spatial resolution.
Results: A warm-up dose of >6 Gy was required for detector stability. Dose-rate measurements were stable across a range from 0.26 to 15 Gy/min and dose response was linear, although the device overestimated small doses compared with pinpoint ionization chamber measurements. Output factors agreed with ionization chamber measurements to within 0.6% for square fields of side between 3 and 25 cm and within 1.2% for 2 x 2 cm(2) fields. The Octavius 4D phantom was found to be consistent with measurements made with radiochromic film, where the gantry angle was found to be within 0.4. of that expected during rotational deliveries. RapidArc FF and FFF beams were found to have an accuracy of >97.9% and >90% of pixels passing 3%/3 mm and 2%/2 mm, respectively. Detector spatial resolution was observed to be a factor in determining the accurate delivery of each plan, particularly at steep dose gradients. This was confirmed using data from a second detector array with higher spatial resolution and with radiochromic film.
Conclusions: The Octavius 4D phantom with associated Octavius detector 729 ionization chamber array is a dosimetrically and mechanically stable device for pretreatment verification of FF and FFF RapidArc treatments. Further improvements may be possible through use of a detector array with higher spatial resolution (detector size and/or detector spacing). (C) 2013 American Association of Physicists in Medicine.
Resumo:
Model selection between competing models is a key consideration in the discovery of prognostic multigene signatures. The use of appropriate statistical performance measures as well as verification of biological significance of the signatures is imperative to maximise the chance of external validation of the generated signatures. Current approaches in time-to-event studies often use only a single measure of performance in model selection, such as logrank test p-values, or dichotomise the follow-up times at some phase of the study to facilitate signature discovery. In this study we improve the prognostic signature discovery process through the application of the multivariate partial Cox model combined with the concordance index, hazard ratio of predictions, independence from available clinical covariates and biological enrichment as measures of signature performance. The proposed framework was applied to discover prognostic multigene signatures from early breast cancer data. The partial Cox model combined with the multiple performance measures were used in both guiding the selection of the optimal panel of prognostic genes and prediction of risk within cross validation without dichotomising the follow-up times at any stage. The signatures were successfully externally cross validated in independent breast cancer datasets, yielding a hazard ratio of 2.55 [1.44, 4.51] for the top ranking signature.