972 resultados para Vehicle safety.
Resumo:
Expert panels have been used extensively in the development of the "Highway Safety Manual" to extract research information from highway safety experts. While the panels have been used to recommend agendas for new and continuing research, their primary role has been to develop accident modification factors—quantitative relationships between highway safety and various highway safety treatments. Because the expert panels derive quantitative information in a “qualitative” environment and because their findings can have significant impacts on highway safety investment decisions, the expert panel process should be described and critiqued. This paper is the first known written description and critique of the expert panel process and is intended to serve professionals wishing to conduct such panels.
Resumo:
This paper describes the formalization and application of a methodology to evaluate the safety benefit of countermeasures in the face of uncertainty. To illustrate the methodology, 18 countermeasures for improving safety of at grade railroad crossings (AGRXs) in the Republic of Korea are considered. Akin to “stated preference” methods in travel survey research, the methodology applies random selection and laws of large numbers to derive accident modification factor (AMF) densities from expert opinions. In a full Bayesian analysis framework, the collective opinions in the form of AMF densities (data likelihood) are combined with prior knowledge (AMF density priors) for the 18 countermeasures to obtain ‘best’ estimates of AMFs (AMF posterior credible intervals). The countermeasures are then compared and recommended based on the largest safety returns with minimum risk (uncertainty). To the author's knowledge the complete methodology is new and has not previously been applied or reported in the literature. The results demonstrate that the methodology is able to discern anticipated safety benefit differences across candidate countermeasures. For the 18 at grade railroad crossings considered in this analysis, it was found that the top three performing countermeasures for reducing crashes are in-vehicle warning systems, obstacle detection systems, and constant warning time systems.
Resumo:
Understanding the expected safety performance of rural signalized intersections is critical for (a) identifying high-risk sites where the observed safety performance is substantially worse than the expected safety performance, (b) understanding influential factors associated with crashes, and (c) predicting the future performance of sites and helping plan safety-enhancing activities. These three critical activities are routinely conducted for safety management and planning purposes in jurisdictions throughout the United States and around the world. This paper aims to develop baseline expected safety performance functions of rural signalized intersections in South Korea, which to date have not yet been established or reported in the literature. Data are examined from numerous locations within South Korea for both three-legged and four-legged configurations. The safety effects of a host of operational and geometric variables on the safety performance of these sites are also examined. In addition, supplementary tables and graphs are developed for comparing the baseline safety performance of sites with various geometric and operational features. These graphs identify how various factors are associated with safety. The expected safety prediction tables offer advantages over regression prediction equations by allowing the safety manager to isolate specific features of the intersections and examine their impact on expected safety. The examination of the expected safety performance tables through illustrated examples highlights the need to correct for regression-to-the-mean effects, emphasizes the negative impacts of multicollinearity, shows why multivariate models do not translate well to accident modification factors, and illuminates the need to examine road safety carefully and methodically. Caveats are provided on the use of the safety performance prediction graphs developed in this paper.
Resumo:
The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 mandated the consideration of safety in the regional transportation planning process. As part of National Cooperative Highway Research Program Project 8-44, "Incorporating Safety into the Transportation Planning Process," we conducted a telephone survey to assess safety-related activities and expertise at Governors Highway Safety Associations (GHSAs), and GHSA relationships with metropolitan planning organizations (MPOs) and state departments of transportation (DOTs). The survey results were combined with statewide crash data to enable exploratory modeling of the relationship between GHSA policies and programs and statewide safety. The modeling objective was to illuminate current hurdles to ISTEA implementation, so that appropriate institutional, analytical, and personnel improvements can be made. The study revealed that coordination of transportation safety across DOTs, MPOs, GHSAs, and departments of public safety is generally beneficial to the implementation of safety. In addition, better coordination is characterized by more positive and constructive attitudes toward incorporating safety into planning.
Resumo:
The intent of this note is to succinctly articulate additional points that were not provided in the original paper (Lord et al., 2005) and to help clarify a collective reluctance to adopt zero-inflated (ZI) models for modeling highway safety data. A dialogue on this important issue, just one of many important safety modeling issues, is healthy discourse on the path towards improved safety modeling. This note first provides a summary of prior findings and conclusions of the original paper. It then presents two critical and relevant issues: the maximizing statistical fit fallacy and logic problems with the ZI model in highway safety modeling. Finally, we provide brief conclusions.
Resumo:
This paper presents the results of a structural equation model (SEM) that describes and quantifies the relationships between corporate culture and safety performance. The SEM is estimated using 196 individual questionnaire responses from three companies with better than average safety records. A multiattribute analysis of corporate safety culture characteristics resulted in a hierarchical description of corporate safety culture comprised of three major categories — people, process, and value. These three major categories were decomposed into 54 measurable questions and used to develop a questionnaire to quantify corporate safety culture. The SEM identified five latent variables that describe corporate safety culture: (1) a company’s safety commitment; (2) the safety incentives that are offered to field personal for safe performance; (3) the subcontractor involvement in the company culture; (4) the field safety accountability and dedication; and (5) the disincentives for unsafe behaviors. These characteristics of company safety culture serve as indicators for a company’s safety performance. Based on the findings from this limited sample of three companies, this paper proposes a list of practices that companies may consider to improve corporate safety culture and safety performance. A more comprehensive study based on a larger sample is recommended to corroborate the findings of this study.
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
Tracking/remote monitoring systems using GNSS are a proven method to enhance the safety and security of personnel and vehicles carrying precious or hazardous cargo. While GNSS tracking appears to mitigate some of these threats, if not adequately secured, it can be a double-edged sword allowing adversaries to obtain sensitive shipment and vehicle position data to better coordinate their attacks, and to provide a false sense of security to monitoring centers. Tracking systems must be designed with the ability to perform route-compliance and thwart attacks ranging from low-level attacks such as the cutting of antenna cables to medium and high-level attacks involving radio jamming and signal / data-level simulation, especially where the goods transported have a potentially high value to terrorists. This paper discusses the use of GNSS in critical tracking applications, addressing the mitigation of GNSS security issues, augmentation systems and communication systems in order to provide highly robust and survivable tracking systems.
Resumo:
On-board mass (OBM) monitoring devices on heavy vehicles (HVs) have been tested in a national programme jointly by Transport Certification Australia Limited and the National Transport Commission. The tests were for, amongst other parameters, accuracy and tamper-evidence. The latter by deliberately tampering with the signals from OBM primary transducers during the tests. The OBM feasibility team is analysing dynamic data recorded at the primary transducers of OBM systems to determine if it can be used to detect tamper events. Tamper-evidence of current OBM systems needs to be determined if jurisdictions are to have confidence in specifying OBM for HVs as part of regulatory schemes. An algorithm has been developed to detect tamper events. The results of its application are detailed here.
Resumo:
Australia, road crash trauma costs the nation A$15 billion annually whilst the US estimates an economic impact of around US$ 230 billion on its network. Worldwide economic cost of road crashes is estimated to be around US$ 518 billion each year. Road accidents occur due to a number of factors including driver behaviour, geometric alignment, vehicle characteristics, environmental impacts, and the type and condition of the road surfacing. Skid resistance is considered one of the most important road surface characteristics because it has a direct effect on traffic safety. In 2005, Austroads (the Association of Australian and New Zealand Road Transport and Traffic Authorities) published a guideline for the management of skid resistance and Queensland Department of Main Roads (QDMR) developed a skid resistance management plan (SRMP). The current QDMR strategy is based on rationale analytical methodology supported by field inspection with related asset management decision tools. The Austroads’s guideline and QDMR's skid resistance management plan have prompted QDMR to review its skid resistance management practice. As a result, a joint research project involving QDMR, Queensland University of Technology (QUT) and the Corporative Research Centre for Integrated Engineering Asset Management (CRC CIEAM) was formed. The research project aims at investigating whether there is significant relationship between road crashes and skid resistance on Queensland’s road networks. If there is, the current skid resistance management practice of QDMR will be reviewed and appropriate skid resistance investigatory levels will be recommended. This paper presents analysis results in assessing the relationship between wet crashes and skid resistance on Queensland roads. Attributes considered in the analysis include surface types, annual average daily traffic (AADT), speed and seal age.
Resumo:
Voice recognition is one of the key enablers to reduce driver distraction as in-vehicle systems become more and more complex. With the integration of voice recognition in vehicles, safety and usability are improved as the driver’s eyes and hands are not required to operate system controls. Whilst speaker independent voice recognition is well developed, performance in high noise environments (e.g. vehicles) is still limited. La Trobe University and Queensland University of Technology have developed a low-cost hardware-based speech enhancement system for automotive environments based on spectral subtraction and delay–sum beamforming techniques. The enhancement algorithms have been optimised using authentic Australian English collected under typical driving conditions. Performance tests conducted using speech data collected under variety of vehicle noise conditions demonstrate a word recognition rate improvement in the order of 10% or more under the noisiest conditions. Currently developed to a proof of concept stage there is potential for even greater performance improvement.
Resumo:
The efficacy of road safety countermeasures to deter motorists from engaging in illegal behaviours is extremely important when considering the personal and economic impact of road accidents on the community. Within many countries, deterrence theory has remained a cornerstone to criminology and criminal justice policy, particularly within the field of road safety, as policy makers and enforcement agencies attempt to increase perceptions regarding the certainty, severity and swiftness of sanctions for those who engage in illegal motoring behaviours. Using the Australian experience (particularly the tremendous amount of research into drink driving), the current paper reviews the principles underpinning deterrence theory, the utilisation of the approach within some contemporary road safety initiatives (e.g., Random Breath Testing) as well as highlights some methods to enhance a deterrent effect. The paper also provides direction for future deterrence-based research, in particular, considering the powerful impact of non-legal sanctions, punishment avoidance as well as creating culturally embedded behavioural change.
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm-3) was about one-half of that near motorways (1211 cm-3) and about twice as high as that in the urban background (269 cm-3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density (R2=0.3 at p<0.05) and correlated well with each other in real time (R2=0.87 at p<0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120-150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2m to 5m of the kerb. Measured concentrations decreased to background at about 15m from the kerb when the wind speed was 1.3 m s-1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.