930 resultados para Vacuum packed meat
Resumo:
Les procédures appliquées avant l’abattage des animaux influencent directement la qualité de la viande en modulant l’état physiologique des porcs; ainsi, l’augmentation de la température corporelle, les taux élevés de lactate sanguin et l’épuisement des réserves de glycogène entre autres, occasionnent la majorité des baisses de qualité. L’objectif de cette thèse était de valider des outils indicateurs de stress porcin pour les fermes et les abattoirs. Ceux-ci seraient appliqués à la surveillance du bien-être animal et à la prédiction de variation de qualité de la viande porcine au niveau commercial. Premierement, les résultats de la thèse ont permis de conclure qu’un des outils développés (analyseur portatif de lactate) mesure la variation du niveau de lactate sanguin associé à l’état physiologique des porcs dans la phase péri-mortem et aide à expliquer la variation de la qualité de la viande chez le porc à l’abattoir, en particulier dans les muscles du jambon. Deuxièmement, les résultats des audits du bien-être animal appliqués de la ferme à l’abattoir ont démontré que la qualité du système d’élevage à la ferme d’origine et les compétences du chauffeur de camion sont d’importants critères affectant la réponse comportementale des porcs à la manipulation avant l’abattage. Ces résultats ont également démontré que les conditions de logement à la ferme (la faible densité et l’enrichissement dans les enclos), le comportement des porcs en période pré-abattage (glissade), ainsi que les interventions du manipulateur (utilisation du bâton électrique) dans la zone d’étourdissement de l’abattoir affectent négativement la variation de la qualité de la viande. L’application des protocoles d’audits dans la filière porcine a également démontré que le respect des critères de bien-être animal fixés par un outil de vérification est primordiale et permet de contrôler les conditions de bien-être des porcs à chaque étape de la période pré-abattage, de produire une viande de qualité supérieure et de réduire les pertes. Les audits de bien-être animal sont donc un outil qui apporte des resultats très pertinents pour aider a éviter les variations de la qualité de la viande chez le porc. Troisièmement, la thermographie infrarouge s’est avéré être une technique prometteuse permettant d’évaluer la variation de température corporelle de l’animal pendant et après un stress physique, en particulier lorsque cette mesure est prise derrière les oreilles. En conclusion, les outils validés à travers cette thèse représentent des méthodologies non invasives et potentiellement complémentaires à d’autres approches d’évaluation de l’état physiologique et du bien-être animal par rapport au stress, permettant de réduire les pertes de qualité de viande (par exemple en utilisation conjointe avec le niveau de lactate sanguin et les indicateurs de stress comportemental, entre autres).
Resumo:
Moisture desorption observations from two bentonite clay mats subjected to ten environmental zones with individually different combinations of laboratory-controlled constant temperatures (between 20 °C and 40 °C) and relative humidity (between 15% and 70%) are presented. These laboratory observations are compared with predictions from mathematical models, such as thin-layer drying equations and kinetic drying models proposed by Page, Wang and Singh, and Henderson and Pabis. The quality of fit of these models is assessed using standard error (SE) of estimate, relative percent of error, and coefficient of correlation. The Page model was found to better predict the drying kinetics of the bentonite clay mats for the simulated tropical climates. Critical study on the drying constant and moisture diffusion coefficient helps to assess the efficacy of a polymer to retain moisture and control desorption through water molecule bonding. This is further substantiated with the Guggenheim–Anderson–De Boer (GAB) desorption isotherm model which is presented.
Resumo:
Water removal in paper manufacturing is an energy-intensive process. The dewatering process generally consists of four stages of which the first three stages include mechanical water removal through gravity filtration, vacuum dewatering and wet pressing. In the fourth stage, water is removed thermally, which is the most expensive stage in terms of energy use. In order to analyse water removal during a vacuum dewatering process, a numerical model was created by using a Level-Set method. Various different 2D structures of the paper model were created in MATLAB code with randomly positioned circular fibres with identical orientation. The model considers the influence of the forming fabric which supports the paper sheet during the dewatering process, by using volume forces to represent flow resistance in the momentum equation. The models were used to estimate the dry content of the porous structure for various dwell times. The relation between dry content and dwell time was compared to laboratory data for paper sheets with basis weights of 20 and 50 g/m2 exposed to vacuum levels between 20 kPa and 60 kPa. The comparison showed reasonable results for dewatering and air flow rates. The random positioning of the fibres influences the dewatering rate slightly. In order to achieve more accurate comparisons, the random orientation of the fibres needs to be considered, as well as the deformation and displacement of the fibres during the dewatering process.
Resumo:
Type 1 neurofibromatosis is a relatively common inherited disease of the nervous system, with a frequency of almost 1 in 3000. It is associated with neurofibromas of various sites. Our case report is about the surgical management of a giant neurofibroma of the right gluteal fold in a 46-year-old male with NF1. The patient presented with increasing edema and accelerated growth of the mass; he underwent percutaneous embolization of lesion vessels that induced necrosis of the neurofibroma. The patient was taken to the operating room, where surgical resection of the bulk of the lesion was undertaken. The postoperative course was complicated by delayed wound closure managed with antibiotics and vacuum-assisted wound closure. Giant neurofibromas similar to this tumor require complex preoperative, intraoperative and postoperative management strategies. Surgical debulk is best managed with preoperative percutaneous embolization that help to avoid surgical bleeding. Postoperative delayed wound closure was managed with the application of negative pressure in a closed environment that triggers granulation and tissue formation.
Resumo:
Negative-pressure therapy or vacuum-assisted closure (VAC) has been used in clinical applications since the 1940’s and has increased in popularity over the past decade. This dressing technique consists of an open cell foam dressing put into the wound cavity, a vacuum pump produces a negative pressure and an adhesive drape. A controlled sub atmospheric pressure from 75 to 150 mmHg is applied. The vacuum-assisted closure has been applied by many clinicians to chronic wounds in humans; however it cannot be used as a replacement for surgical debridement. The initial treatment for every contaminated wound should be the necrosectomy. The VAC therapy has a complementary function and the range of its indications includes pressure sores, stasis ulcers, chronic wounds such as diabetic foot ulcers, post traumatic and post operative wounds, infected wounds such as necrotizing fasciitis or sternal wounds, soft-tissue injuries, bone exposed injuries, abdominal open wounds and for securing a skin graft. We describe our experience with the VAC dressing used to manage acute and chronic wounds in a series of 135 patients, with excellent results together with satisfaction of the patients.
Resumo:
The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189 +/- 58 operational taxonomic units (OTUs) but dropped to 27 +/- 12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota.
Resumo:
Feed production, swine and slaughterhouses were already reported as occupational environments with high fungal contamination. This condition can ultimately lead to the development of several health conditions. This study aimed to characterize the occupational exposure to fungal burden in three different settings: swine feed unit, swine units and slaughterhouse.
Resumo:
Low protein diet and odour emissions in meat chickens
Resumo:
The impact of Chernobyl on the 137Cs activities found in wild boars in Europe, even in remote locations from the NPP, has been much greater than the impact of Fukushima on boars in Japan. Although there is great variability within the 137Cs concentrations throughout the wild boar populations, some boars in southern Germany in recent years exhibit higher activity concentrations (up to 10,000 Bq/kg and higher) than the highest 137Cs levels found in boars in the governmental food monitoring campaign (7900 Bq/kg) in Fukushima prefecture in Japan. The levels of radiocesium in boar appear to be more persistent than would be indicated by the constantly decreasing 137Cs inventory observed in the soil which points to a food source that is highly retentive to 137Cs contamination or to other radioecological anomalies that are not yet fully understood.
Resumo:
The effect of dietary crude protein (CP) and additives on odor flux from meat chicken litter was investigated using 180 day-old Ross 308 male chicks randomly allocated to five dietary treatments with three replicates of 12 birds each. A 5 × 3 factorial arrangement of treatments was employed. Factors were: diet (low CP, high CP, high CP+antibiotic, high CP+probiotic, high CP+saponin) and age (15, 29, 35 days). The antibiotic used was Zn bacitracin, the probiotic was a blend of three Bacillus subtilis strains and the saponin came from a blend of Yucca and Quillaja. Odorants were collected from litter headspace with a flux hood and measured using selective ion flow tube mass spectrometry (SIFT-MS). Litter moisture, water activity (Aw), and litter headspace odorant concentrations were correlated. The results showed that low CP group produced lower flux of dimethyl amine, trimethyl amine, H2S, NH3, and phenol in litter compared to high CP group (P < 0.05). Similarly, high CP+probiotic group produced lower flux of H2S (P < 0.05) and high CP+saponin group produced lower flux of trimethylamine and phenol in litter compared to high CP group (P < 0.05). The dietary treatments tended (P = 0.065) to have higher flux of methanethiol in high CP group compared to others. There was a diet × age interaction for litter flux of diacetyl, 3-hydroxy-2-butanone (acetoin), 3-methyl-1-butanol, 3-methylbutanal, ethanethiol, propionic acid, and hexane (P < 0.05). Concentrations of diacetyl, acetoin, propionic acid, and hexane in litter were higher from low CP group compared to all other treatments on d 35 (P < 0.05) but not on d 15 and 29. A high litter moisture increased water activity (P < 0.01) and favored the emissions of methyl mercaptan, hydrogen sulfide, dimethyl sulfide, ammonia, trimethyl amine, phenol, indole, and 3-methylindole over others. Thus, the low CP diet, Bacillus subtilis based probiotic and the blend of Yucca/Quillaja saponin were effective in reducing the emissions of some key odorants from meat chicken litter.
Resumo:
Assessing and addressing odour impacts from poultry production is extremely difficult and subjective because the odorants involved and their dynamics over time and space are poorly understood. This knowledge gap is due, in part, to the lack of suitable analytical tools for measuring and monitoring odorants in the field. The emergence of Selected Ion Flow Tube – Mass Spectrometry (SIFT–MS) and similar instruments is changing that. These tools can rapidly quantify targeted odorants in ambient air in real time, even at very low concentrations. Such data is essential for developing better odour abatement strategies, assessment methods and odour dispersion models. This project trialled a SIFT–MS to determine its suitability for assessing the odorants in meat chicken shed emissions over time and space. This report details evaluations in New Zealand and Australia to determine the potential of SIFT–MS as a tool for the chicken meat industry, including odour measurement (as a proxy for dynamic olfactometry). The report is specifically targeted at those funding and conducting poultry odour research. It will be of interest to those involved with environmental odour monitoring and assessment in general. The high upfront cost of SIFT–MS will lead to potential users wanting compelling evidence that SIFT–MS will meet their needs before they invest in one.
Resumo:
Processed meat products are of worldwide importance and, because of their intrinsic factors as well as the processing methods, they are highly prone to fungal and mycotoxin contamination. Ochratoxin A (OTA) is the most significant mycotoxin in processed meat products. Penicillium nordicum is considered to be responsible for OTA contamination of meat products, as it is highly adapted to salt and protein-rich matrices and is moderately psycrotrophic. However, another OTA-producing fungus, Aspergillus westerdijkiae, adapted to carbon-rich matrices such as cereals and coffee beans, has been recently associated with high levels of OTA in meat products. Several Lactic Acid Bacteria (LAB) and yeasts have been tested as biocontrol agents against P. nordicum growth and OTA production in meat products, with promising results, but none of the studies have considered A. westerdijkiae. The aim of this work was to evaluate in vitro the effect of a commercial starter culture used in sausage fermentation and four yeasts isolated from dry-cured sausage on these two OTA-producing fungi, both in terms of fungal growth and of OTA production, using different meat-based culture media as model systems. The mechanisms underlying the observed effect were also studied. For this purpose, C. krusei, C. zeylanoides, R. mucilaginosa, R. glutinis, a mix of these yeasts and the starter culture were co-inoculated with P. nordicum and A. westerdijkiae in industrial sausage, traditional sausage, and ham-based media, under conditions of water activity, salt concentration and temperature that mimic real conditions at beginning and end of sausage curing process. Fungal growth was determined by measuring colony diameter, and OTA production was quantified by HPLC-FLD after extraction with methanol. Yeasts where found to inhibit significantly the growth of both fungi. P. nordicum was unable to produce detectable OTA in both sausage-based media under any condition. In ham, yeasts reduced OTA production, while the starter culture significantly increased it. Unexpectedly, OTA production by A. westerdijkiae was significantly stimulated in all media tested by all microorganisms. Matrix has a significant effect on OTA production by P. nordicum, but not by A. westerdijkiae, for which only temperature showed to have effect. By testing the mechanisms of action by which starter culture and C. zeylanoides influenced fungal responses, we were able to determine that direct contact and simultaneous growth of test organisms were the mechanisms more significantly involved in the responses. In conclusion, ochratoxigenic fungi do not all respond to antagonistic microorganisms in the same way. The use of biocontrol agents with the intent of reducing fungal growth and mycotoxin production by one fungus can have unexpected effects on others, thus leading to unforeseen safety problems. Further experiments are recommended to properly understand the reasons behind the different effects of microorganisms, to ensure their safe as biocontrol agents.
Resumo:
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA’s Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within +/- 3 Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2-2.5 Celsius lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft in 2017-2018 is also presented.
Resumo:
Kenya is composed of over 40 ethnic communities who practice varied methods of animal handling and slaughter. Socio-cultural and religious traditions have the potential to influence animal handling and slaughter practices. These influences have, however, not been documented in the literature as far as the author is aware. Also, the literature has documented the connection between the manner of animal treatment and meat quality, but this is rarely discussed in the literature in Kenya; this connection is important as it informs modern meat trade practices by Kenyans as they trade in the global arena. This survey aimed to mainly establish and document the animal slaughter practices among Kenyan communities, and, to also highlight any current provisions related to meeting modern animal welfare requirements, animal handling procedures in the meat trade and discuss their potential influence on meat quality available in commerce in Kenya. This preliminary study surveyed the slaughter practices among 10 different Kenyan communities through a semi-structured questionnaire, focus group discussions and individual interviews. The survey demonstrated that different Kenyan communities practice varied methods of animal slaughter depending on whether the animal being slaughtered is for public feasting, domestic consumption or commercial merchandizing. The Kenyan communities surveyed in this study depend mainly on males to slaughter livestock for females preparing it for domestic use using a number of instruments and methods. For small stock for domestic consumption, females may slaughter the animal except for Muslims whose males have to slaughter the animal with a special knife (a Khalef) according to Muslim rites to render it Halal. Large stock is invariably slaughtered by males irrespective of the community, and the manner of use of the carcass. Gender, age, religion, community and the size of the animal were the major determinants of the method of animal slaughter. The animal welfare issues highlighted in the survey and related to the handling and slaughter of livestock have important implications for meat quality during commercial merchandizing. There is an apparent need to provide education to herders, livestock handlers, employees and management in the livestock industry in Kenya on the relationship between animal welfare requirements, animal handling procedures and meat quality. Such awareness can potentially improve the quality and economic value of the meat available in commerce.
Resumo:
Nanostructures are highly attractive for future electrical energy storage devices because they enable large surface area and short ion transport time through thin electrode layers for high power devices. Significant enhancement in power density of batteries has been achieved by nano-engineered structures, particularly anode and cathode nanostructures spatially separated far apart by a porous membrane and/or a defined electrolyte region. A self-aligned nanostructured battery fully confined within a single nanopore presents a powerful platform to determine the rate performance and cyclability limits of nanostructured storage devices. Atomic layer deposition (ALD) has enabled us to create and evaluate such structures, comprised of nanotubular electrodes and electrolyte confined within anodic aluminum oxide (AAO) nanopores. The V2O5- V2O5 symmetric nanopore battery displays exceptional power-energy performance and cyclability when tested as a massively parallel device (~2billion/cm2), each with ~1m3 volume (~1fL). Cycled between 0.2V and 1.8V, this full cell has capacity retention of 95% at 5C rate and 46% at 150C, with more than 1000 charge/discharge cycles. These results demonstrate the promise of ultrasmall, self-aligned/regular, densely packed nanobattery structures as a testbed to study ionics and electrodics at the nanoscale with various geometrical modifications and as a building block for high performance energy storage systems[1, 2]. Further increase of full cell output potential is also demonstrated in asymmetric full cell configurations with various low voltage anode materials. The asymmetric full cell nanopore batteries, comprised of V2O5 as cathode and prelithiated SnO2 or anatase phase TiO2 as anode, with integrated nanotubular metal current collectors underneath each nanotubular storage electrode, also enabled by ALD. By controlling the amount of lithium ion prelithiated into SnO2 anode, we can tune full cell output voltage in the range of 0.3V and 3V. This asymmetric nanopore battery array displays exceptional rate performance and cyclability. When cycled between 1V and 3V, it has capacity retention of approximately 73% at 200C rate compared to 1C, with only 2% capacity loss after more than 500 charge/discharge cycles. With increased full cell output potential, the asymmetric V2O5-SnO2 nanopore battery shows significantly improved energy and power density. This configuration presents a more realistic test - through its asymmetric (vs symmetric) configuration – of performance and cyclability in nanoconfined environment. This dissertation covers (1) Ultra small electrochemical storage platform design and fabrication, (2) Electron and ion transport in nanostructured electrodes inside a half cell configuration, (3) Ion transport between anode and cathode in confined nanochannels in symmetric full cells, (4) Scale up energy and power density with geometry optimization and low voltage anode materials in asymmetric full cell configurations. As a supplement, selective growth of ALD to improve graphene conductance will also be discussed[3]. References: 1. Liu, C., et al., (Invited) A Rational Design for Batteries at Nanoscale by Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 23-30. 2. Liu, C.Y., et al., An all-in-one nanopore battery array. Nature Nanotechnology, 2014. 9(12): p. 1031-1039. 3. Liu, C., et al., Improving Graphene Conductivity through Selective Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 133-138.