882 resultados para VEGETATION CLASSIFICATION SYSTEM
Resumo:
National meteorological offices are largely concerned with synoptic-scale forecasting where weather predictions are produced for a whole country for 24 hours ahead. In practice, many local organisations (such as emergency services, construction industries, forestry, farming, and sports) require only local short-term, bespoke, weather predictions and warnings. This thesis shows that the less-demanding requirements do not require exceptional computing power and can be met by a modern, desk-top system which monitors site-specific ground conditions (such as temperature, pressure, wind speed and direction, etc) augmented with above ground information from satellite images to produce `nowcasts'. The emphasis in this thesis has been towards the design of such a real-time system for nowcasting. Local site-specific conditions are monitored using a custom-built, stand alone, Motorola 6809 based sub-system. Above ground information is received from the METEOSAT 4 geo-stationary satellite using a sub-system based on a commercially available equipment. The information is ephemeral and must be captured in real-time. The real-time nowcasting system for localised weather handles the data as a transparent task using the limited capabilities of the PC system. Ground data produces a time series of measurements at a specific location which represents the past-to-present atmospheric conditions of the particular site from which much information can be extracted. The novel approach adopted in this thesis is one of constructing stochastic models based on the AutoRegressive Integrated Moving Average (ARIMA) technique. The satellite images contain features (such as cloud formations) which evolve dynamically and may be subject to movement, growth, distortion, bifurcation, superposition, or elimination between images. The process of extracting a weather feature, following its motion and predicting its future evolution involves algorithms for normalisation, partitioning, filtering, image enhancement, and correlation of multi-dimensional signals in different domains. To limit the processing requirements, the analysis in this thesis concentrates on an `area of interest'. By this rationale, only a small fraction of the total image needs to be processed, leading to a major saving in time. The thesis also proposes an extention to an existing manual cloud classification technique for its implementation in automatically classifying a cloud feature over the `area of interest' for nowcasting using the multi-dimensional signals.
Resumo:
The IRDS standard is an international standard produced by the International Organisation for Standardisation (ISO). In this work the process for producing standards in formal standards organisations, for example the ISO, and in more informal bodies, for example the Object Management Group (OMG), is examined. This thesis examines previous models and classifications of standards. The previous models and classifications are then combined to produce a new classification. The IRDS standard is then placed in a class in the new model as a reference anticipatory standard. Anticipatory standards are standards which are developed ahead of the technology in order to attempt to guide the market. The diffusion of the IRDS is traced over a period of eleven years. The economic conditions which affect the diffusion of standards are examined, particularly the economic conditions which prevail in compatibility markets such as the IT and ICT markets. Additionally the consequences of the introduction of gateway or converter devices into a market where a standard has not yet been established is examined. The IRDS standard did not have an installed base and this hindered its diffusion. The thesis concludes that the IRDS standard was overtaken by new developments such as object oriented technologies and middleware. This was partly because of the slow development process of developing standards in traditional organisations which operate on a consensus basis and partly because the IRDS standard did not have an installed base. Also the rise and proliferation of middleware products resulted in exchange mechanisms becoming dominant rather than repository solutions. The research method used in this work is a longitudinal study of the development and diffusion of the ISO/EEC IRDS standard. The research is regarded as a single case study and follows the interpretative epistemological point of view.
Resumo:
This thesis deals with the problem of Information Systems design for Corporate Management. It shows that the results of applying current approaches to Management Information Systems and Corporate Modelling fully justify a fresh look to the problem. The thesis develops an approach to design based on Cybernetic principles and theories. It looks at Management as an informational process and discusses the relevance of regulation theory to its practice. The work proceeds around the concept of change and its effects on the organization's stability and survival. The idea of looking at organizations as viable systems is discussed and a design to enhance survival capacity is developed. It takes Ashby's theory of adaptation and developments on ultra-stability as a theoretical framework and considering conditions for learning and foresight deduces that a design should include three basic components: A dynamic model of the organization- environment relationships; a method to spot significant changes in the value of the essential variables and in a certain set of parameters; and a Controller able to conceive and change the other two elements and to make choices among alternative policies. Further considerations of the conditions for rapid adaptation in organisms composed of many parts, and the law of Requisite Variety determine that successful adaptive behaviour requires certain functional organization. Beer's model of viable organizations is put in relation to Ashby's theory of adaptation and regulation. The use of the Ultra-stable system as abstract unit of analysis permits developing a rigorous taxonomy of change; it starts distinguishing between change with in behaviour and change of behaviour to complete the classification with organizational change. It relates these changes to the logical categories of learning connecting the topic of Information System design with that of organizational learning.
Resumo:
The Alborz Mountain range separates the northern part of Iran from the southern part. It also isolates a narrow coastal strip to the south of the Caspian Sea from the Central Iran plateau. Communication between the south and north until the 1950's was via two roads and one rail link. In 1963 work was completed on a major access road via the Haraz Valley (the most physically hostile area in the region). From the beginning the road was plagued by accidents resulting from unstable slopes on either side of the valley. Heavy casualties persuaded the government to undertake major engineering works to eliminate ''black spots" and make the road safe. However, despite substantial and prolonged expenditure the problems were not solved and casualties increased steadily due to the increase in traffic using the road. Another road was built to bypass the Haraz road and opened to traffic in 1983. But closure of the Haraz road was still impossible because of the growth of settlements along the route and the need for access to other installations such as the Lar Dam. The aim of this research was to explore the possibility of applying Landsat MSS imagery to locating black spots along the road and the instability problems. Landsat data had not previously been applied to highway engineering problems in the study area. Aerial photographs are better in general than satellite images for detailed mapping, but Landsat images are superior for reconnaissance and adequate for mapping at the 1 :250,000 scale. The broad overview and lack of distortion in the Landsat imagery make the images ideal for structural interpretation. The results of Landsat digital image analysis showed that certain rock types and structural features can be delineated and mapped. The most unstable areas comprising steep slopes, free of vegetation cover can be identified using image processing techniques. Structural lineaments revealed from the image analysis led to improved results (delineation of unstable features). Damavand Quaternary volcanics were found to be the dominant rock type along a 40 km stretch of the road. These rock types are inherently unstable and partly responsible for the difficulties along the road. For more detailed geological and morphological interpretation a sample of small subscenes was selected and analysed. A special developed image analysis package was designed at Aston for use on a non specialized computing system. Using this package a new and unique method for image classification was developed, allowing accurate delineation of the critical features of the study area.
Resumo:
This thesis presents an investigation into the application of methods of uncertain reasoning to the biological classification of river water quality. Existing biological methods for reporting river water quality are critically evaluated, and the adoption of a discrete biological classification scheme advocated. Reasoning methods for managing uncertainty are explained, in which the Bayesian and Dempster-Shafer calculi are cited as primary numerical schemes. Elicitation of qualitative knowledge on benthic invertebrates is described. The specificity of benthic response to changes in water quality leads to the adoption of a sensor model of data interpretation, in which a reference set of taxa provide probabilistic support for the biological classes. The significance of sensor states, including that of absence, is shown. Novel techniques of directly eliciting the required uncertainty measures are presented. Bayesian and Dempster-Shafer calculi were used to combine the evidence provided by the sensors. The performance of these automatic classifiers was compared with the expert's own discrete classification of sampled sites. Variations of sensor data weighting, combination order and belief representation were examined for their effect on classification performance. The behaviour of the calculi under evidential conflict and alternative combination rules was investigated. Small variations in evidential weight and the inclusion of evidence from sensors absent from a sample improved classification performance of Bayesian belief and support for singleton hypotheses. For simple support, inclusion of absent evidence decreased classification rate. The performance of Dempster-Shafer classification using consonant belief functions was comparable to Bayesian and singleton belief. Recommendations are made for further work in biological classification using uncertain reasoning methods, including the combination of multiple-expert opinion, the use of Bayesian networks, and the integration of classification software within a decision support system for water quality assessment.
Resumo:
Classification of metamorphic rocks is normally carried out using a poorly defined, subjective classification scheme making this an area in which many undergraduate geologists experience difficulties. An expert system to assist in such classification is presented which is capable of classifying rocks and also giving further details about a particular rock type. A mixed knowledge representation is used with frame, semantic and production rule systems available. Classification in the domain requires that different facets of a rock be classified. To implement this, rocks are represented by 'context' frames with slots representing each facet. Slots are satisfied by calling a pre-defined ruleset to carry out the necessary inference. The inference is handled by an interpreter which uses a dependency graph representation for the propagation of evidence. Uncertainty is handled by the system using a combination of the MYCIN certainty factor system and the Dempster-Shafer range mechanism. This allows for positive and negative reasoning, with rules capable of representing necessity and sufficiency of evidence, whilst also allowing the implementation of an alpha-beta pruning algorithm to guide question selection during inference. The system also utilizes a semantic net type structure to allow the expert to encode simple relationships between terms enabling rules to be written with a sensible level of abstraction. Using frames to represent rock types where subclassification is possible allows the knowledge base to be built in a modular fashion with subclassification frames only defined once the higher level of classification is functioning. Rulesets can similarly be added in modular fashion with the individual rules being essentially declarative allowing for simple updating and maintenance. The knowledge base so far developed for metamorphic classification serves to demonstrate the performance of the interpreter design whilst also moving some way towards providing a useful assistant to the non-expert metamorphic petrologist. The system demonstrates the possibilities for a fully developed knowledge base to handle the classification of igneous, sedimentary and metamorphic rocks. The current knowledge base and interpreter have been evaluated by potential users and experts. The results of the evaluation show that the system performs to an acceptable level and should be of use as a tool for both undergraduates and researchers from outside the metamorphic petrography field. .
Resumo:
The process framework comprises three phases, as follows: scope the supply chain/network; identify the options for supply system architecture and select supply system architecture. It facilitates a structured approach that analyses the supply chain/network contextual characteristics, in order to ensure alignment with the appropriate supply system architecture. The process framework was derived from comprehensive literature review and archival case study analysis. The review led to the classification of supply system architectures according to their orientation, whether integrated; partially integrated; co-ordinated or independent. The classification was combined with the characteristics that influence the selection of supply system architecture to encapsulate the conceptual framework. It builds upon existing frameworks and methodologies by focusing on structured procedure; supporting project management; facilitating participation and clarifying point of entry. The process framework was initially tested in three case study applications from the food, automobile and hand tool industries. A variety of industrial settings was chosen to illustrate transferability. The case study applications indicate that the process framework is a valid approach to the problem; however, further testing is required. In particular, the use of group support system technologies to support the process and the steps involving the participation of software vendors need further testing. However, the process framework can be followed due to the clarity of its presentation. It considers the issue of timing by including alternative decision-making techniques, dependent on the constraints. It is useful for ensuring a sound business case is developed, with supporting documentation and analysis that identifies the strategic and functional requirements of supply system architecture.
Resumo:
This paper describes an innovative sensing approach allowing capture, discrimination, and classification of transients automatically in gait. A walking platform is described, which offers an alternative design to that of standard force plates with advantages that include mechanical simplicity and less restriction on dimensions. The scope of the work is to investigate as an experiment the sensitivity of the distributive tactile sensing method with the potential to address flexibility on gait assessment, including patient targeting and the extension to a variety of ambulatory applications. Using infrared sensors to measure plate deflection, gait patterns are compared with stored templates using a pattern recognition algorithm. This information is input into a neural network to classify normal and affected walking events, with a classification accuracy of just under 90 per cent achieved. The system developed has potential applications in gait analysis and rehabilitation, whereby it can be used as a tool for early diagnosis of walking disorders or to determine changes between pre- and post-operative gait.
Resumo:
The computer simulation of manufacturing systems is commonly carried out using discrete event simulation (DES). Indeed, there appears to be a lack of applications of continuous simulation methods, particularly system dynamics (SD), despite evidence that this technique is suitable for industrial modelling. This paper investigates whether this is due to a decline in the general popularity of SD, or whether modelling of manufacturing systems represents a missed opportunity for SD. On this basis, the paper first gives a review of the concept of SD and fully describes the modelling technique. Following on, a survey of the published applications of SD in the 1990s is made by developing and using a structured classification approach. From this review, observations are made about the application of the SD method and opportunities for future research are suggested.
Resumo:
The traditional method of classifying neurodegenerative diseases is based on the original clinico-pathological concept supported by 'consensus' criteria and data from molecular pathological studies. This review discusses first, current problems in classification resulting from the coexistence of different classificatory schemes, the presence of disease heterogeneity and multiple pathologies, the use of 'signature' brain lesions in diagnosis, and the existence of pathological processes common to different diseases. Second, three models of neurodegenerative disease are proposed: (1) that distinct diseases exist ('discrete' model), (2) that relatively distinct diseases exist but exhibit overlapping features ('overlap' model), and (3) that distinct diseases do not exist and neurodegenerative disease is a 'continuum' in which there is continuous variation in clinical/pathological features from one case to another ('continuum' model). Third, to distinguish between models, the distribution of the most important molecular 'signature' lesions across the different diseases is reviewed. Such lesions often have poor 'fidelity', i.e., they are not unique to individual disorders but are distributed across many diseases consistent with the overlap or continuum models. Fourth, the question of whether the current classificatory system should be rejected is considered and three alternatives are proposed, viz., objective classification, classification for convenience (a 'dissection'), or analysis as a continuum.
Resumo:
Effective clinical decision making depends upon identifying possible outcomes for a patient, selecting relevant cues, and processing the cues to arrive at accurate judgements of each outcome's probability of occurrence. These activities can be considered as classification tasks. This paper describes a new model of psychological classification that explains how people use cues to determine class or outcome likelihoods. It proposes that clinicians respond to conditional probabilities of outcomes given cues and that these probabilities compete with each other for influence on classification. The model explains why people appear to respond to base rates inappropriately, thereby overestimating the occurrence of rare categories, and a clinical example is provided for predicting suicide risk. The model makes an effective representation for expert clinical judgements and its psychological validity enables it to generate explanations in a form that is comprehensible to clinicians. It is a strong candidate for incorporation within a decision support system for mental-health risk assessment, where it can link with statistical and pattern recognition tools applied to a database of patients. The symbiotic combination of empirical evidence and clinical expertise can provide an important web-based resource for risk assessment, including multi-disciplinary education and training. © 2002 Informa UK Ltd All rights reserved.
Resumo:
Descriptions of vegetation communities are often based on vague semantic terms describing species presence and dominance. For this reason, some researchers advocate the use of fuzzy sets in the statistical classification of plant species data into communities. In this study, spatially referenced vegetation abundance values collected from Greek phrygana were analysed by ordination (DECORANA), and classified on the resulting axes using fuzzy c-means to yield a point data-set representing local memberships in characteristic plant communities. The fuzzy clusters matched vegetation communities noted in the field, which tended to grade into one another, rather than occupying discrete patches. The fuzzy set representation of the community exploited the strengths of detrended correspondence analysis while retaining richer information than a TWINSPAN classification of the same data. Thus, in the absence of phytosociological benchmarks, meaningful and manageable habitat information could be derived from complex, multivariate species data. We also analysed the influence of the reliability of different surveyors' field observations by multiple sampling at a selected sample location. We show that the impact of surveyor error was more severe in the Boolean than the fuzzy classification. © 2007 Springer.