965 resultados para Used, Oil, Sludge, Engine, Volatile


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to characterise and compare fast pyrolysis product yields from straw, high yielding perennial grasses and hardwoods. Feedstocks selected for this study include: wheat straw (Triticum aestivum), switch grass (Panicum virgatum), miscanthus (Miscanthus x giganteus), willow short rotation coppice (Salix viminalis) and beech wood (Fagus sylvatica). The experimental work is divided into two sections: analytical (TGA and Py-GC-MS) and laboratory scale processing using a continuously fed bubbling fluidized bed reactor with a capacity of up to 1 kg/h. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) has been used to quantify pyrolysis products and simulate fast pyrolysis heating rates, in order to study potential key light and medium volatile decomposition products found in these feedstocks. Py-GC-MS quantification results show that the highest yields of furfural (0.57 wt.%), 2-furanmethanol (0.18 wt.%), levoglucosan (0.73 wt.%), 1,2-benzenediol (0.27 wt.%) and 2-methoxy-4-vinylphenol (0.38 wt.%) were found in switch grass, and that willow SRC produced the highest yield of phenol (0.33 wt.%). The bio-oil higher heating value was highest for switch grass (22.3 MJ/kg). Water content within the bio-oil is highest in the straw and perennial grasses and lowest in the hardwood willow SRC. The high bio-oil and char heating value and low water content found in willow SRC, makes this crop an attractive energy feedstock for fast pyrolysis processing, if the associated production costs and harvest yields can be maintained at current reported values. The bio-oil from switch grass has the highest potential for the production of high value chemicals. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was carried for an EC supported project that aimed to produce ethyl levulinate as a diesel miscible biofuel from biomass by acid hydrolysis. The objective of this research was to explore thermal conversion technologies to recover further diesel miscible biofuels and/or other valuable products from the remaining solid acid hydrolysis residues (AHR). AHR consists of mainly lignin and humins and contains up to 80% of the original energy in the biomass. Fast pyrolysis and pyrolytic gasification of this low volatile content AHR was unsuccessful. However, successful air gasification of AHR gave a low heating value gas for use in engines for power or heat with the aim of producing all the utility requirements in any commercial implementation of the ethyl levulinate production process. In addition, successful fast pyrolysis of the original biomass gave organic liquid yields of up to 63.9 wt.% (dry feed basis) comparable to results achieved using a standard hardwood. The fast pyrolysis liquid can be used as a fuel or upgraded to biofuels. A novel molybdenum carbide catalyst was tested in fast pyrolysis to explore the potential for upgrading. Although there was no deoxygenation, some bio-oil properties were improved including viscosity, pH and homogeneity through decreasing sugars and increasing furanics and phenolics. AHR gasification was explored in a batch gasifier with a comparison with the original biomass. Refractory and low volatile content AHR gave relatively low gas yields (74.21 wt.%), low tar yields (5.27 wt.%) and high solid yields (20.52 wt.%). Air gasification gave gas heating values of around 5MJ/NM3, which is a typical value, but limitations of the equipment available restricted the extent of process and product analysis. In order to improve robustness of AHR powder for screw feeding into gasifiers, a new densification technique was developed based on mixing powder with bio-oil and curing the mixture at 150°C to polymerise the bio-oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rice husks from Brunei were subjected via intermediate pyrolysis for bio-oil production. Two main objectives were set out for this study. The application of intermediate pyrolysis on Brunei rice husk for the production of bio-oil is the main objective of this experiment. Characterisation of the rice husks was inclusive as a pre-requisite step to assess the suitability as feedstock for production of liquid fuels. Following on from the characterisation results, a temperature of 450°C was established as the optimum temperature for the production of bio-oil. A homogenous bio-oil was obtained from the pyrolysis of dry rice husk, and the physicochemical properties and chemical compositions were analysed. The second objective is the introduction of catalysts into the pyrolysis process which aims to improve the bio-oil quality, and maximise the desired liquid bio-oil properties. The incorporation of the catalysts was done via a fixed tube reactor into the pyrolysis system. Ceramic monoliths were used as the catalyst support, with montmorillonite clay as a binder to attach the catalysts onto the catalyst support. ZSM-5, Al-MCM-41, Al-MSU-F and Brunei rice husk ash (BRHA) together with its combination were adopted as catalysts. Proposed criterions dictated the selection of the best catalysts, subsequently leading to the optimisation process for bio-oil production. ZSM-5/Al-MCM-41 proved the most desirable catalyst, which increases the production of aromatics and phenols, decreased the organic acids and improved the physicochemical properties such as the pH, viscosity, density and H:C molar ratios. Variation in the ratio and positioning of both catalysts were the significant key factor for the catalyst optimisation study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research investigates specific ash control methods to limit inorganic content within biomass prior to fast pyrolysis and effect of specific ash components on fast pyrolysis processing, mass balance yields and bio-oil quality and stability. Inorganic content in miscanthus was naturally reduced over the winter period from June (7.36 wt. %) to February (2.80 wt. %) due to a combination of senescence and natural leaching from rain water. September harvest produced similar mass balance yields, bio-oil quality and stability compared to February harvest (conventional harvest), but nitrogen content in above ground crop was to high (208 kg ha.-1) to maintain sustainable crop production. Deionised water, 1.00% HCl and 0.10% Triton X-100 washes were used to reduce inorganic content of miscanthus. Miscanthus washed with 0.10% Triton X-100 resulted in the highest total liquid yield (76.21 wt. %) and lowest char and reaction water yields (9.77 wt. % and 8.25 wt. % respectively). Concentrations of Triton X-100 were varied to study further effects on mass balance yields and bio-oil stability. All concentrations of Triton X-100 increased total liquid yield and decreased char and reaction water yields compared to untreated miscanthus. In terms of bio-oil stability 1.00% Triton X-100 produced the most stable bio-oil with lowest viscosity index (2.43) and lowest water content index (1.01). Beech wood was impregnated with potassium and phosphorus resulting in lower liquid yields and increased char and gas yields due to their catalytic effect on fast pyrolysis product distribution. Increased potassium and phosphorus concentrations produced less stable bio-oils with viscosity and water content indexes increasing. Fast pyrolysis processing of phosphorus impregnated beech wood was problematic as the reactor bed material agglomerated into large clumps due to char formation within the reactor, affecting fluidisation and heat transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated sludge basins (ASBs) are a key-step in wastewater treatment processes that are used to eliminate biodegradable pollution from the water discharged to the natural environment. Bacteria found in the activated sludge consume and assimilate nutrients such as carbon, nitrogen and phosphorous under specific environmental conditions. However, applying the appropriate agitation and aeration regimes to supply the environmental conditions to promote the growth of the bacteria is not easy. The agitation and aeration regimes that are applied to activated sludge basins have a strong influence on the efficacy of wastewater treatment processes. The major aims of agitation by submersible mixers are to improve the contact between biomass and wastewater and the prevention of biomass settling. They induce a horizontal flow in the oxidation ditch, which can be quantified by the mean horizontal velocity. Mean values of 0.3-0.35 m s-1 are recommended as a design criteria to ensure best conditions for mixing and aeration (Da Silva, 1994). To give circulation velocities of this order of magnitude, the positioning and types of mixers are chosen from the plant constructors' experience and the suppliers' data for the impellers. Some case studies of existing plants have shown that measured velocities were not in the range that was specified in the plant design. This illustrates that there is still a need for design and diagnosis approach to improve process reliability by eliminating or reducing the number of short circuits, dead zones, zones of inefficient mixing and poor aeration. The objective of the aeration is to facilitate the quick degradation of pollutants by bacterial growth. To achieve these objectives a wastewater treatment plant must be adequately aerated; thus resulting in 60-80% of all energetic consummation being dedicated to the aeration alone (Juspin and Vasel, 2000). An earlier study (Gillot et al., 1997) has illustrated the influence that hydrodynamics have on the aeration performance as measure by the oxygen transfer coefficient. Therefore, optimising the agitation and aeration systems can enhance the oxygen transfer coefficient and consequently reduce the operating costs of the wastewater treatment plant. It is critically important to correctly estimate the mass transfer coefficient as any errors could result in the simulations of biological activity not being physically representative. Therefore, the transfer process was rigorously examined in several different types of process equipment to determine the impact that different hydrodynamic regimes and liquid-side film transfer coefficients have on the gas phase and the mass transfer of oxygen. To model the biological activity occurring in ASBs, several generic biochemical reaction models have been developed to characterise different biochemical reaction processes that are known as Activated Sludge Models, ASM (Henze et al., 2000). The ASM1 protocol was selected to characterise the impact of aeration on the bacteria consuming and assimilating ammonia and nitrate in the wastewater. However, one drawback of ASM protocols is that the hydrodynamics are assumed to be uniform by the use of perfectly mixed, plug flow reactors or as a number of perfectly mixed reactors in series. This makes it very difficult to identify the influence of mixing and aeration on oxygen mass transfer and biological activity. Therefore, to account for the impact of local gas-liquid mixing regime on the biochemical activity Computational Fluid Dynamics (CFD) was used by applying the individual ASM1 reaction equations as the source terms to a number of scalar equations. Thus, the application of ASM1 to CFD (FLUENT) enabled the investigation of the oxygen transfer efficiency and the carbon & nitrogen biological removal in pilot (7.5 cubic metres) and plant scale (6000 cubic metres) ASBs. Both studies have been used to validate the effect that the hydrodynamic regime has on oxygen mass transfer (the circulation velocity and mass transfer coefficient) and the effect that this had on the biological activity on pollutants such as ammonia and nitrate (Cartland Glover et al., 2005). The work presented here is one part to of an overall approach for improving the understanding of ASBs and the impact that they have in terms of the hydraulic and biological performance on the overall wastewater treatment process. References CARTLAND GLOVER G., PRINTEMPS C., ESSEMIANI K., MEINHOLD J., (2005) Modelling of wastewater treatment plants ? How far shall we go with sophisticated modelling tools? 3rd IWA Leading-Edge Conference & Exhibition on Water and Wastewater Treatment Technologies, 6-8 June 2005, Sapporo, Japan DA SILVA G. (1994). Eléments d'optimisation du transfert d'oxygène par fines bulles et agitateur séparé en chenal d'oxydation. PhD Thesis. CEMAGREF Antony ? France. GILLOT S., DERONZIER G., HEDUIT A. (1997). Oxygen transfer under process conditions in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. WEFTEC, Chicago, USA. HENZE M., GUJER W., MINO T., van LOOSDRECHT M., (2000). Activated Sludge Models ASM1, ASM2, ASM2D and ASM3, Scientific and Technical Report No. 9. IWA Publishing, London, UK. JUSPIN H., VASEL J.-L. (2000). Influence of hydrodynamics on oxygen transfer in the activated sludge process. IWA, Paris - France.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report results of an experimental study, complemented by detailed statistical analysis of the experimental data, on the development of a more effective control method of drug delivery using a pH sensitive acrylic polymer. New copolymers based on acrylic acid and fatty acid are constructed from dodecyl castor oil and a tercopolymer based on methyl methacrylate, acrylic acid and acryl amide were prepared using this new approach. Water swelling characteristics of fatty acid, acrylic acid copolymer and tercopolymer respectively in acid and alkali solutions have been studied by a step-change method. The antibiotic drug cephalosporin and paracetamol have also been incorporated into the polymer blend through dissolution with the release of the antibiotic drug being evaluated in bacterial stain media and buffer solution. Our results show that the rate of release of paracetamol getss affected by the pH factor and also by the nature of polymer blend. Our experimental data have later been statistically analyzed to quantify the precise nature of polymer decay rates on the pH density of the relevant polymer solvents. The time evolution of the polymer decay rates indicate a marked transition from a linear to a strictly non-linear regime depending on the whether the chosen sample is a general copolymer (linear) or a tercopolymer (non-linear). Non-linear data extrapolation techniques have been used to make probabilistic predictions about the variation in weight percentages of retained polymers at all future times, thereby quantifying the degree of efficacy of the new method of drug delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed in terms of a convolution of two special functions of Wright’s type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brewing process is an energy intensive process that uses large quantities of heat and electricity. To produce this energy requires a high, mainly fossil fuel consumption and the cost of this is increasing each year due to rising fuel costs. One of the main by-products from the brewing process is Brewers Spent Grain (BSG), an organic residue with very high moisture content. It is widely available each year and is often given away as cattle feed or disposed of to landfill as waste. Currently these methods of disposal are also costly to the brewing process. The focus of this work was to investigate the energy potential of BSG via pyrolysis, gasification and catalytic steam reforming, in order to produce a tar-free useable fuel gas that can be combusted in a CHP plant to develop heat and electricity. The heat and electricity can either be used on site or exported. The first stage of this work was the drying and pre-treatment of BSG followed by characterisation to determine its basic composition and structure so it can be evaluated for its usefulness as a fuel. A thorough analysis of the characterisation results helps to better understand the thermal behaviour of BSG feedstock so it can be evaluated as a fuel when subjected to thermal conversion processes either by pyrolysis or gasification. The second stage was thermochemical conversion of the feedstock. Gasification of BSG was explored in a fixed bed downdraft gasifier unit. The study investigated whether BSG can be successfully converted by fixed bed downdraft gasification operation and whether it can produce a product gas that can potentially run an engine for heat and power. In addition the pyrolysis of BSG was explored using a novel “Pyroformer” intermediate pyrolysis reactor to investigate the behaviour of BSG under these processing conditions. The physicochemical properties and compositions of the pyrolysis fractions obtained (bio-oil, char and permanent gases) were investigated for their applicability in a combined heat power (CHP) application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work contributes to the development of search engines that self-adapt their size in response to fluctuations in workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computational resources to or from the engine. In this paper, we focus on the problem of regrouping the metric-space search index when the number of virtual machines used to run the search engine is modified to reflect changes in workload. We propose an algorithm for incrementally adjusting the index to fit the varying number of virtual machines. We tested its performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud, while calibrating the results to compensate for the performance fluctuations of the platform. Our experiments show that, when compared with computing the index from scratch, the incremental algorithm speeds up the index computation 2–10 times while maintaining a similar search performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomass pyrolysis to bio-oil is one of the promising sustainable fuels. In this work, relation between biomass feedstock element characteristic and crude bio-oil production yield and lower heating value was explored. The element characteristics considered in this study include moisture, ash, fix carbon, volatile matter, C, H, N, O, S, cellulose, hemicellulose, and lignin content. A semi-batch fixed bed reactor was used for biomass pyrolysis with heating rate of 30 °C/min from room temperature to 600 °C and the reactor was held at 600 °C for 1 h before cooling down. Constant nitrogen flow (1bar) was provided for anaerobic condition. Sago and Napier glass were used in the study to create different element characteristic of feedstock by altering mixing ratio. Comparison between each element characteristic to crude bio-oil yield and low heating value was conducted. The result suggested potential key element characteristic for pyrolysis and provide a platform to access the feedstock element acceptance range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research provides a novel approach for the determination of water content and higher heating value of pyrolysis oil. Pyrolysis oil from Napier grass was used in this study. Water content was determined with pH adjustment using a Karl Fischer titration unit. An equation for actual water in the oil was developed and used, and the results were compared with the traditional Karl Fischer method. The oil was found to have between 42 and 64% moisture under the same pyrolysis condition depending on the properties of the Napier grass prior to the pyrolysis. The higher heating value of the pyrolysis oil was determined using an oil-diesel mixture, and 20 to 25 wt% of the oil in the mixture gave optimum and stable results. A new model was developed for evaluation of higher heating value of dry pyrolysis oil. The dry oil has higher heating values in the range between 19 and 26 MJ/kg. The developed protocols and equations may serve as a reliable alternative means for establishing the actual water content and the higher heating value of pyrolysis oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomass pyrolysis to bio-oil is one of the promising sustainable fuels. In this work, relation between biomass feedstock element characteristic and pyrolysis process outputs was explored. The element characteristics considered in this study include moisture, ash, fix carbon, volatile matter, carbon, hydrogen, nitrogen, oxygen, and sulphur. A semi-batch fixed bed reactor was used for biomass pyrolysis with heating rate of 30 °C/min from room temperature to 600 °C and the reactor was held at 600 °C for 1 h before cooling down. Constant nitrogen flow rate of 5 L/min was provided for anaerobic condition. Rice husk, Sago biomass and Napier grass were used in the study to form different element characteristic of feedstock by altering mixing ratio. Comparison between each element characteristic to total produced bio-oil yield, aqueous phase bio-oil yield, organic phase bio-oil yield, higher heating value of organic phase bio-oil, and organic bio-oil compounds was conducted. The results demonstrate that process performance is associated with feedstock properties, which can be used as a platform to access the process feedstock element acceptance range to estimate the process outputs. Ultimately, this work evaluated the element acceptance range for proposed biomass pyrolysis technology to integrate alternative biomass species feedstock based on element characteristic to enhance the flexibility of feedstock selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofuels derived from industry waste have potential to substitute fossil fuels (Diesel and Gasoline) in internal combustion (IC) engines. Use of waste streams as fuels would help to reduce considerably life-cycle greenhouse gas emissions and minimise waste processing costs. In this study an investigation into the fuel properties of two waste derived biofuels were carried out, they are: (i) Glidfuel (GF) biofuel - a waste stream from paper industry, and (ii) Palm Oil Mill Effluent (POME) biodiesel - biodiesel produced from palm oil industry effluent through various treatment and transesterification process. GF and POME was mixed together at various proportions and separately with fossil diesel (FD) to assess the miscibility and various physical and chemical properties of the blends. Fuel properties such as kinematic viscosity, higher heating value, water content, acid number, density, flash point temperature, CHNO content, sulphur content, ash content, oxidation stability, cetane number and copper corrosion ratings of all the fuels were measured. The properties of GF, POME and various blends were compared with the corresponding properties of the standard FD. Significance of the fuel properties and their expected effects on combustion and exhaust emission characteristics of the IC engine were discussed. Results showed that most properties of both GF and POME biodiesel were comparable to FD. Both GF and POME were miscible with each other, and also separately with the FD. Flash point temperatures of GF and POME biodiesel were 40.7°C and 158.7°C respectively. The flash point temperature of GF was about 36% lower than corresponding FD. The water content in GF and FD were 0.74 (% wt) and 0.01 (% wt) respectively. Acidity values and corrosion ratings of both GF and POME biodiesel were low compared to corresponding value for FD. The study concluded that optimum GF-POME biofuel blends can substitute fossil diesel use in IC engines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A kőolaj (és a földgáz), a XX. században felfutott fosszilis energiahordozók történetileg a szenet váltották fel. Ma egyértelműen meghatározzák a világ energiafelhasználását. Miután fosszilisak, rövid távon nem újratermelhetőek, ezért felhasználásuk történetét végigkísérte a feltárt és feltárható készletek mennyiségének állandó újrabecslése is, és folyamatosan jelen van a végességükre vonatkozó apokaliptikus kép, amit az elmúlt 40 év rendkívül hektikus, sokszor kiugróan magas árai is alátámasztanak. Cikkünkben reális képet szeretnénk adni az olaj mennyiségi és árváltozásairól, és ezek lehetséges közgazdasági, társadalmi hatásairól. Miután a rendelkezésre álló hely kevés, csak a legfontosabb összefüggéseket emeljük ki, bizonyos adatokat is inkább illusztrációszerűen közlünk. Célunk nem mélyelemzés, hanem egy átfogó helyzetkép. Vázoljuk a kőolajjal kapcsolatos fontosabb történeti mozzanatokat, a kőolaj felhasználásának irányait Európában és Magyarországon, valamint a készletekkel kapcsolatos összefoglaló gondolatokat. _______________ The volatile oil prices of the past 40 years have always foreshadowed an apocalyptic vision of the exhaustion of global reserves. The paper reviews the important historical moments of the usage of oil, with a special focus on Europe and Hungary. It also details issues related to oil reserves. The main conclusions of the paper are the following: (1) fears of exhausting oil reserves have been rebutted several times; (2) high oil prices can be barriers to the development of the transportation sector, even if innovation is happening in the background; (3) the distribution of oil reserves carries huge political risks; and (4) it is unclear what will take the place of oil as the main source of energy.