918 resultados para Urbanizing Areas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho é apresentado um modelo de redes neurais que será utilizado como ferramenta para uso no planejamento energético e na construção de cenários energéticos através da identificação e agrupamento de pixels representativos de classes de água, vegetação e antropização no entorno do reservatório de Tucuruí, Estado do Pará (bacia do rio Tocantins). Para o estudo, foram utilizadas fotografias aéreas ortorretificadas e um recorte da imagem do satélite Landsat, ambos obtidos em agosto de 2001 e classificados utilizando a métrica da mínima distância no software Matlab 7.3.0 (Matrix Laboratory - software de matemática aplicada) e no Arcview 3.2a (programa de Sistemas de Informações Geográficas). Para classificação da área no Matlab, foram utilizadas redes neurais competitivas, mais especificamente as redes de Kohonen que são caracterizadas por realizar um mapeamento de um espaço de dimensão n (número de entradas) para um espaço de dimensão m (número de saídas). Os resultados obtidos no classificador utilizando rede neural e no classificador do Arcview foram semelhantes, mas houve uma divergência no que diz respeito à imagem de alta e média resolução que pode ser justificada pelo fato de que a imagem de alta resolução espacial ocasiona muita variação espectral em algumas feições, gerando dificuldades nas classificações. Esse classificador automático é uma ferramenta importante para identificar oportunidades e potenciais a serem desenvolvidos na construção de cenários energéticos programados. Os resultados deste trabalho confirmam que a imagem de média resolução ainda é a mais indicada para resolver a maioria dos problemas que envolvem identificação de cobertura do solo para utilização em planejamento energético.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Essa dissertação tem por objetivo analisar a influência de famílias wavelets e suas ordens no desempenho de um algoritmo de localização de faltas a partir das ondas viajantes de dois terminais de uma linha de transmissão aérea. Tornou-se objetivo secundário a modelagem de um sistema elétrico de potência (SEP) para obtenção de um universo de faltas que validassem o localizador. Para isso, parte de um SEP da Eletrobrás-Eletronorte em 500/230 kV foi modelado no Alternative Transient Program (ATP) utilizando-se parâmetros reais. A Transformada Wavelet, via análise multiresolução (AMR), é empregada valendo-se de sua característica de localização temporal, permitindo caracterizações precisas de instantes de transitórios eletromagnéticos ocasionados por faltas, as quais geram ondas que ao se propagarem em direção aos terminais da linha contêm os tempos de propagação destas do local do defeito a tais terminais e podem ser convenientemente extraídos por tal transformada. Pela metodologia adotada no algoritmo, a diferença entre esses tempos determina com boa exatidão o local de ocorrência da falta sobre a linha. Entretanto, um dos agentes variantes do erro nessa estimação é a escolha da Wavelet usada na AMR dos sinais, sendo, portanto, a avaliação dessa escolha sobre o erro, objetivo principal do trabalho, justificada pela ainda inexistente fundamentação científica que garanta a escolha de uma wavelet ótima a uma certa aplicação. Dentre um leque de Wavelets discretas, obtiveram-se resultados adequados para 16 delas, havendo erros máximos inferiores aos 250 metros estipulados para a precisão. Duas Wavelets, a Db15 e a Sym17, sobressaíram-se ao errarem, respectivamente, 3,5 e 1,1 vezes menos que as demais. A metodologia empregada consta da: exportação dos dados das faltas do ATP para o MATLAB®; aplicação da transformação modal de Clarke; decomposição dos modos alfa e síntese dos níveis 1 de detalhes via AMR; cálculo de suas máximas magnitudes e determinação dos índices temporais; e por fim, a teoria das ondas viajantes equaciona e estima o local do defeito sobre a LT, sendo tudo isso programado no MATLAB e os erros de localização analisados estatisticamente no Microsoft Excell®. Ao final elaborou-se ainda uma GUI (Guide User Interface) para a Interface Homem-Máquina (IHM) do localizador, servindo também para análises gráficas de qualquer das contingências aplicadas ao SEP. Os resultados alcançados demonstram uma otimização de performance em razão da escolha da wavelet mais adequada ao algoritmo e norteiam para uma aplicação prática do localizador.