932 resultados para Uniformity layer
Resumo:
Ice shelves strongly interact with coastal Antarctic sea ice and the associated ecosystem by creating conditions favourable to the formation of a sub-ice platelet layer. The close investigation of this phenomenon and its seasonal evolution remain a challenge due to logistical constraints and a lack of suitable methodology. In this study, we characterize the seasonal cycle of Antarctic fast ice adjacent to the Ekström Ice Shelf in the eastern Weddell Sea. We used a thermistor chain with the additional ability to record the temperature response induced by cyclic heating of resistors embedded in the chain. Vertical sea-ice temperature and heating profiles obtained daily between November 2012 and February 2014 were analyzed to determine sea-ice and snow evolution, and to calculate the basal energy budget. The residual heat flux translated into an ice-volume fraction in the platelet layer of 0.18 ± 0.09, which we reproduced by a independent model simulation and agrees with earlier results. Manual drillings revealed an average annual platelet-layer thickness increase of at least 4m, and an annual maximum thickness of 10m beneath second-year sea ice. The oceanic contribution dominated the total sea-ice production during the study, effectively accounting for up to 70% of second-year sea-ice growth. In summer, an oceanic heat flux of 21 W/m**2 led to a partial thinning of the platelet layer. Our results further show that the active heating method, in contrast to the acoustic sounding approach, is well suited to derive the fast-ice mass balance in regions influenced by ocean/ice-shelf interaction, as it allows sub-diurnal monitoring of the platelet-layer thickness.
Resumo:
This work presents results of a study of plankton and benthic microbiocenoses of the Amur River estuary. It is shown that distribution of total abundance and indicator groups of bacteriobenthos are characterized by stronger heterogeneity compared with bacterioplankton and that it depends on the Amur River runoff and bottom type. The river runoff helps by increasing overall bacterioplankton abundance in the near-mouth part of the estuary. Microorganisms utilizing low concentrations of organic matter (OM) play major role in processes of OM utilization in water and bottom sediments. Saprophytic bacteria play a significant role in OM utilization only in water at certain sampling sites in the Tatarsky Strait and Sakhalin Bay and in bottom sediments sampled in the mouth part of the estuary. Some parts of the estuary subjected to organic contamination are found according to microbiological characteristics. It is shown that fluctuation of salinity leads to change of the role of bacteria with different food demands in the microbial community.
Resumo:
We present composite depth scales for the multiply cored intervals from Sites 1150 and 1151. These new depth scales place coeval strata recovered in cores from different holes at a single site into a common stratigraphic framework. At Site 1150, double coring between Holes 1150A and 1150B occurred over only a short interval between ~703 and 713 meters below seafloor (mbsf), but this is sufficient to tie the upper portion of the stratigraphic section cored in Hole 1150A to the lower portion cored in Hole 1150B. The upper ~100 m of the sedimentary section at Site 1151 was double cored with the advanced piston corer and partially cored with the rotary core barrel, resulting in the complete recovery of this interval. The composite depth scales were constructed using Splicer software to vertically adjust the relative depths of various cores from one hole to the depths from another hole so as to align distinct physical properties measured on cores. The magnetic susceptibility data was the physical property most easily correlated between holes, and therefore primarily used to create a composite depth scale and spliced stratigraphic section. The spliced section is a continuous stratigraphic section constructed from representative cored intervals from the holes at a site. Both the splice and the composite depth scale can be applied to other data sets from Site 1151 to provide a stratigraphically continuous and laterally consistent basis for interpreting lithologic features or data sets. The resulting composite scale showed a 30% improvement in correlation of the magnetic susceptibility data relative to the original mbsf depth scale, and comparable improvement when applied to the other data sets.