872 resultados para Undersea robotics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are many deformable objects such as papers, clothes, ropes in a person’s living space. To have a robot working in automating the daily tasks it is important that the robot works with these deformable objects. Manipulation of deformable objects is a challenging task for robots because these objects have an infinite-dimensional configuration space and are expensive to model, making real-time monitoring, planning and control difficult. It forms a particularly important field of robotics with relevant applications in different sectors such as medicine, food handling, manufacturing, and household chores. In this report, there is a clear review of the approaches used and are currently in use along with future developments to achieve this task. My research is more focused on the last 10 years, where I have systematically reviewed many articles to have a clear understanding of developments in this field. The main contribution is to show the whole landscape of this concept and provide a broad view of how it has evolved. I also explained my research methodology by following my analysis from the past to the present along with my thoughts for the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robotic Grasping is an important research topic in robotics since for robots to attain more general-purpose utility, grasping is a necessary skill, but very challenging to master. In general the robots may use their perception abilities like an image from a camera to identify grasps for a given object usually unknown. A grasp describes how a robotic end-effector need to be positioned to securely grab an object and successfully lift it without lost it, at the moment state of the arts solutions are still far behind humans. In the last 5–10 years, deep learning methods take the scene to overcome classical problem like the arduous and time-consuming approach to form a task-specific algorithm analytically. In this thesis are present the progress and the approaches in the robotic grasping field and the potential of the deep learning methods in robotic grasping. Based on that, an implementation of a Convolutional Neural Network (CNN) as a starting point for generation of a grasp pose from camera view has been implemented inside a ROS environment. The developed technologies have been integrated into a pick-and-place application for a Panda robot from Franka Emika. The application includes various features related to object detection and selection. Additionally, the features have been kept as generic as possible to allow for easy replacement or removal if needed, without losing time for improvement or new testing.