953 resultados para Unconvetional reservoir
Resumo:
A simple procedure was developed for packing PicoFrit HPLC columns with chromatographic stationary phase using a reservoir fabricated from standard laboratory HPLC fittings. Packed columns were mounted onto a stainless steel ultra-low volume precolumn filter assembly containing a 0.5-mu m pore size steel frit. This format provided a conduit for the application of the nanospray voltage and protected the column from obstruction by sample material. The system was characterised and operational performance assessed by analysis of a range of peptide standards (n = 9).
Resumo:
Intimin facilitates intestinal colonization by enterohemorrhagic Escherichia coli O157:H7; however, the importance of intimin binding to its translocated receptor (Tir) as opposed to cellular coreceptors is unknown. The intimin-Tir interaction is needed for optimal actin assembly under adherent bacteria in vitro, a process which requires the Tir-cytoskeleton coupling protein (TccP/EspF(U)) in E. coli O157:H7. Here we report that E. coli O157:H7 tir mutants are at least as attenuated as isogenic eae mutants in calves and lambs, implying that the role of intimin in the colonization of reservoir hosts can be explained largely by its binding to Tir. Mutation of tccP uncoupled actin assembly from the intimin-Tir-mediated adherence of E. coli O157:H7 in vitro but did not impair intestinal colonization in calves and lambs, implying that pedestal formation may not be necessary for persistence. However, an E. coli O157:H7 tccP mutant induced typical attaching and effacing lesions in a bovine ligated ileal loop model of infection, suggesting that TccP-independent mechanisms of actin assembly may operate in vivo.
The unsteady flow of a weakly compressible fluid in a thin porous layer II: three-dimensional theory
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a three-dimensional layer, composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Numerical solution of this three-dimensional evolution problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l, a situation which occurs frequently in the application to oil and gas reservoir recovery and which leads to significant stiffness in the numerical problem. Under the assumption that $\epsilon\propto h/l\ll 1$, we show that, to leading order in $\epsilon$, the pressure field varies only in the horizontal directions away from the wells (the outer region). We construct asymptotic expansions in $\epsilon$ in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive expressions for all significant process quantities. The only computations required are for the solution of non-stiff linear, elliptic, two-dimensional boundary-value, and eigenvalue problems. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the layer, $\epsilon$, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighbourhood of wells and away from wells.
Resumo:
Spontaneous activity of the brain at rest frequently has been considered a mere backdrop to the salient activity evoked by external stimuli or tasks. However, the resting state of the brain consumes most of its energy budget, which suggests a far more important role. An intriguing hint comes from experimental observations of spontaneous activity patterns, which closely resemble those evoked by visual stimulation with oriented gratings, except that cortex appeared to cycle between different orientation maps. Moreover, patterns similar to those evoked by the behaviorally most relevant horizontal and vertical orientations occurred more often than those corresponding to oblique angles. We hypothesize that this kind of spontaneous activity develops at least to some degree autonomously, providing a dynamical reservoir of cortical states, which are then associated with visual stimuli through learning. To test this hypothesis, we use a biologically inspired neural mass model to simulate a patch of cat visual cortex. Spontaneous transitions between orientation states were induced by modest modifications of the neural connectivity, establishing a stable heteroclinic channel. Significantly, the experimentally observed greater frequency of states representing the behaviorally important horizontal and vertical orientations emerged spontaneously from these simulations. We then applied bar-shaped inputs to the model cortex and used Hebbian learning rules to modify the corresponding synaptic strengths. After unsupervised learning, different bar inputs reliably and exclusively evoked their associated orientation state; whereas in the absence of input, the model cortex resumed its spontaneous cycling. We conclude that the experimentally observed similarities between spontaneous and evoked activity in visual cortex can be explained as the outcome of a learning process that associates external stimuli with a preexisting reservoir of autonomous neural activity states. Our findings hence demonstrate how cortical connectivity can link the maintenance of spontaneous activity in the brain mechanistically to its core cognitive functions.
Resumo:
Soluble reactive phosphorus (SRP) plays a key role in eutrophication, a global problem decreasing habitat quality and in-stream biodiversity. Mitigation strategies are required to prevent SRP fluxes from exceeding critical levels, and must be robust in the face of potential changes in climate, land use and a myriad of other influences. To establish the longevity of these strategies it is therefore crucial to consider the sensitivity of catchments to multiple future stressors. This study evaluates how the water quality and hydrology of a major river system in the UK (the River Thames) respond to alterations in climate, land use and water resource allocations, and investigates how these changes impact the relative performance of management strategies over an 80-year period. In the River Thames, the relative contributions of SRP from diffuse and point sources vary seasonally. Diffuse sources of SRP from agriculture dominate during periods of high runoff, and point sources during low flow periods. SRP concentrations rose under any future scenario which either increased a) surface runoff or b) the area of cultivated land. Under these conditions, SRP was sourced from agriculture, and the most effective single mitigation measures were those which addressed diffuse SRP sources. Conversely, where future scenarios reduced flow e.g. during winters of reservoir construction, the significance of point source inputs increased, and mitigation measures addressing these issues became more effective. In catchments with multiple point and diffuse sources of SRP, an all-encompassing effective mitigation approach is difficult to achieve with a single strategy. In order to attain maximum efficiency, multiple strategies might therefore be employed at different times and locations, to target the variable nature of dominant SRP sources and pathways.
Resumo:
Each human body plays host to a microbial population which is both numerically vast (at around 1014 microbial cells) and phenomenally diverse (over 1,000 species). The majority of the microbial species in the gut have not been cultured but the application of culture-independent approaches for high throughput diversity and functionality analysis has allowed characterisation of the diverse microbial phylotypes present in health and disease. Studies in monozygotic twins, showing that these retain highly similar microbiota decades after birth and initial colonisation, are strongly indicative that diversity of the microbiome is host-specific and affected by the genotype. Microbial diversity in the human body is reflected in both richness and evenness. Diversity increases steeply from birth reaching its highest point in early adulthood, before declining in older age. However, in healthy subjects there appears to be a core of microbial phylotypes which remains relatively stable over time. Studies of individuals from diverse geopraphies suggest that clusters of intestinal bacterial groups tend to occur together, constituting ‘enterotypes’. So variation in intestinal microbiota is stratified rather than continuous and there may be a limited number of host/microbial states which respond differently to environmental influences. Exploration of enterotypes and functional groups may provide biomarkers for disease and insights into the potential for new treatments based on manipulation of the microbiome. In health, the microbiota interact with host defences and exist in harmonious homeostasis which can then be disturbed by invading organisms or when ‘carpet bombing’ by antibiotics occurs. In a portion of individuals with infections, the disease will resolve itself without the need for antibiotics and microbial homeostasis with the host’s defences is restored. The administration of probiotics (live microorganisms which when administered in adequate amounts confer a health benefit on the host) represents an artificial way to enhance or stimulate these natural processes. The study of innate mechanisms of antimicrobial defence on the skin, including the production of numerous antimicrobial peptides (AMPs), has shown an important role for skin commensal organisms. These organisms may produce AMPs, and also amplify the innate immune responses to pathogens by activating signalling pathways and processing host produced AMPs. Research continues into how to enhance and manipulate the role of commensal organisms on the skin. The challenges of skin infection (including diseases caused by multiply resistant organisms) and infestations remain considerable. The potential to re-colonise the skin to replace or reduce pathogens, and exploring the relationship between microbiota elsewhere and skin diseases are among a growing list of research targets. Lactobacillus species are among the best known ‘beneficial’ bacterial members of the human microbiota. Of the approximately 120 species known, about 15 are known to occur in the human vagina. These organisms have multiple properties, including the production of lactic acid, hydrogen peroxide and bacteriocins, which render the vagina inhospitable to potential pathogens. Depletion of the of the normal Lactobacillus population and overgrowth of vaginal anaerobes, accompanied by the loss of normal vaginal acidity can lead to bacterial vaginosis – the commonest cause of abnormal vaginal discharge in women. Some vaginal anaerobes are associated with the formation of vaginal biofilms which serve to act as a reservoir of organisms which persists after standard antibiotic therapy of bacterial vaginosis and may help to account for the characteristically high relapse rate in the condition. Administration of Lactobacillus species both vaginally and orally have shown beneficial effects in the treatment of bacterial vaginosis and such treatments have an excellent overall safety record. Candida albicans is a frequent coloniser of human skin and mucosal membranes, and is a normal part of the microbiota in the mouth, gut and vagina. Nevertheless Candida albicans is the most common fungal pathogen worldwide and is a leading cause of serious and often fatal nosocomial infections. What turns this organism from a commensal to a pathogen is a combination of increasing virulence in the organism and predisposing host factors that compromise immunity. There has been considerable research into the use of probiotic Lactobacillus spp. in vaginal candidiasis. Studies in reconstituted human epithelium and monolayer cell cultures have shown that L. rhamnosus GG can protect mucosa from damage caused by Candida albicans, and enhance the immune responses of mucosal surfaces. Such findings offer the promise that the use of such probiotic bacteria could provide new options for antifungal therapy. Studies of changes of the human intestinal microbiota in health and disease are complicated by its size and diversity. The Alimentary Pharmabiotic Centre in Cork (Republic of Ireland) has the mission to ‘mine microbes for mankind’ and its work illustrates the potential benefits of understanding the gut microbiota. Work undertaken at the centre includes: mapping changes in the microbiota with age; studies of the interaction between the microbiota and the gut; potential interactions between the gut microbiota and the central nervous system; the potential for probiotics to act as anti-infectives including through the production of bacteriocins; and the characterisation of interactions between gut microbiota and bile acids which have important roles as signalling molecules and in immunity. The important disease entity where the role of the gut microbiota appears to be central is the Irritable Bowel Syndrome (IBS). IBS patients show evidence of immune activation, impaired gut barrier function and abnormal gut microbiota. Studies with probiotics have shown that these organisms can exert anti-inflammatory effects in inflammatory bowel disease and may strengthen the gut barrier in IBS of the diarrhoea-predominant type. Formal randomised trials of probiotics in IBS show mixed results with limited benefit for some but not all. Studies confirm that administered probiotics can survive and temporarily colonise the gut. They can also stimulate the numbers of other lactic acid bacilli in the gut, and reduce the numbers of pathogens. However consuming live organisms is not the only way to influence gut microbiota. Dietary prebiotics are selectively fermented ingredients that can change the composition and/or activity of the gastrointestinal microbiota in beneficial ways. Dietary components that reach the colon, and are available to influence the microbiota include poorly digestible carbohydrates, such as non-starch polysaccharides, resistant starch, non-digestible oligosaccharides (NDOs) and polyphenols. Mixtures of probiotic and prebiotic ingredients that can selectively stimulate growth or activity of health promoting bacteria have been termed ‘synbiotics’. All of these approaches can influence gut microbial ecology, mainly to increase bifidobacteria and lactobacilli, but metagenomic approaches may reveal wider effects. Characterising how these changes produce physiological benefits may enable broader use of these tactics in health and disease in the future. The current status of probiotic products commercially available worldwide is less than ideal. Prevalent problems include misidentification of ingredient organisms and poor viability of probiotic microorganisms leading to inadequate shelf life. On occasions these problems mean that some commercially available products cannot be considered to meet the definition of a probiotic product. Given the potential benefits of manipulating the human microbiota for beneficial effects, there is a clear need for improved regulation of probiotics. The potential importance of the human microbiota cannot be overstated. ‘We feed our microbes, they talk to us and we benefit. We just have to understand and then exploit this.’ (Willem de Vos).
Resumo:
During the Last Glacial Maximum, the climate was substantially colder and the carbon cycle was clearly different from the late Holocene. According to proxy data deep oceanic δ13C was very low, and the atmospheric CO2 concentration also reduced. Several mechanisms have been proposed to explain these changes, but none can fully explain the data, especially the very low deep ocean δ13C values. Oceanic core data show that the deep ocean was very cold and salty, which would lead to enhanced deep ocean stratification. We show that such an enhanced stratification in the coupled climate model CLIMBER-2 helps get very low deep oceanic δ13C values. Indeed the simulated δ13C reaches values as low as −0.8‰ in line with proxy data evidences. Moreover it increases the oceanic carbon reservoir leading to a small, yet robust, atmospheric CO2 drop of approximately 10 ppm.
Resumo:
During the cold period of the Last Glacial Maximum (LGM, about 21 000 years ago) atmospheric CO2 was around 190 ppm, much lower than the pre-industrial concentration of 280 ppm. The causes of this substantial drop remain partially unresolved, despite intense research. Understanding the origin of reduced atmospheric CO2 during glacial times is crucial to comprehend the evolution of the different carbon reservoirs within the Earth system (atmosphere, terrestrial biosphere and ocean). In this context, the ocean is believed to play a major role as it can store large amounts of carbon, especially in the abyss, which is a carbon reservoir that is thought to have expanded during glacial times. To create this larger reservoir, one possible mechanism is to produce very dense glacial waters, thereby stratifying the deep ocean and reducing the carbon exchange between the deep and upper ocean. The existence of such very dense waters has been inferred in the LGM deep Atlantic from sediment pore water salinity and δ18O inferred temperature. Based on these observations, we study the impact of a brine mechanism on the glacial carbon cycle. This mechanism relies on the formation and rapid sinking of brines, very salty water released during sea ice formation, which brings salty dense water down to the bottom of the ocean. It provides two major features: a direct link from the surface to the deep ocean along with an efficient way of setting a strong stratification. We show with the CLIMBER-2 carbon-climate model that such a brine mechanism can account for a significant decrease in atmospheric CO2 and contribute to the glacial-interglacial change. This mechanism can be amplified by low vertical diffusion resulting from the brine-induced stratification. The modeled glacial distribution of oceanic δ13C as well as the deep ocean salinity are substantially improved and better agree with reconstructions from sediment cores, suggesting that such a mechanism could have played an important role during glacial times.
Resumo:
Interferometric Synthetic Aperture Radar (InSAR) measurements of surface deformation at Nyamuragira Volcano between 1996 and 2010 reveal a variety of co-eruptive and inter-eruptive signals. During 7 of the 8 eruptions in this period deformation was measured that is consistent with the emplacement of shallow near-vertical dykes feeding the eruptive fissures and associated with a NNW-trending fissure zone that traverses the summit caldera. Between eruptions the caldera and the summit part of this fissure zone subsided gradually (b3–5 cm/year). We also find evidence of post-eruption subsidence around the sites of the main vents of some flank eruptions (2002, 2004, 2006, and 2010). In the 6 months prior to the 2010 eruption a10-km wide zone centred on the caldera inflated by 1–2 cm. The low magnitude of this signal suggests that the presumed magma reservoir at 3–8 km depth contains highly compressible magma with little stored elastic strain energy. To the north of the caldera the fissure zone splits into WNW and NE branches around a zone that has a distinct InSAR signal. We interpret this zone to represent an elevated, 'stable' block of basement rocks buried by lavas within the Rift Zone.
Resumo:
Observations of volcanoes extruding andesitic lava to produce lava domes often reveal cyclic behaviour. At Soufriere Hills Volcano, Montserrat, cycles with sub-daily and multi-week periods have been recognised on many occasions. These two types of cycle have been modelled separately as stick-slip magma flow at the junction between a dyke and an overlying cylindrical conduit (Costa et al. 2012), and as the filling and discharge of magma through the elastic-walled dyke (Costa et al., 2007a) respectively. Here, we couple these two models to simulate the behaviour over a period of well-observed multi-week cycles, with accompanying sub-daily cycles, from 13 May to 21 September 1997. The coupled model captures well the asymmetrical first-order behaviour: the first 40% of the multi-week cycle consists of high rates of lava extrusion during short period/high amplitude sub-daily cycles as the dyke reservoir discharges itself. The remainder of the cycle involves increasing pressurization as more magma is stored, and extrusion rate falls, followed by a gradual increase in the period of the sub-daily cycles.
Resumo:
Variations in carbon-14 to carbon-12 ratio in the atmosphere (Δ14Catm) provide a powerful diagnostic for elucidating the timing and nature of geophysical and anthropological change. The (Atlantic) marine archive suggests a rapid Δ14Catm increase of 50‰ at the onset of the Younger Dryas (YD) cold reversal (12.9–11.7 kyr BP), which has not yet been satisfactorily explained in terms of magnitude or causal mechanism, as either a change in ocean ventilation or production rate. Using Earth-system model simulations and comparison of marine-based radiocarbon records from different ocean basins, we demonstrate that the YD Δ14Catm increase is smaller than suggested by the marine archive. This is due to changes in reservoir age, predominantly caused by reduced ocean ventilation.
Resumo:
Wild pollinators have been shown to enhance the pollination of Brassica napus(oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policymakers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.
Resumo:
Chongqing is the largest directly-controlled municipality in China, which is now undergoing a rapid urbanization. The urbanization rate increased from 35.6% in 2000 to 48.3% in 2007, and it is estimated to reach at least 70% by 2020. The question remains open: What are the consequences of such rapid urbanization in Chongqing in terms of urban microclimate? Furthermore, Chongqing is located within the Three Gorges Reservoir (TGR) region and the upper Yangtze River, where the Three Gorges Reservoir (TGR) project started in 1993 and was completed in 2010. As one of the biggest construction projects in the world with a rising water level of 175m and water storage capacity of about 39.3 billion m3, it would be interesting to investigate how such a gigantic project impacts the surrounding micro-environment, especially in Chongqing. Different research approaches are adopted in the study. Our literature review indicates present studies on the urban climate in Chongqing are mainly confined within the historical trend analysis of several weather stations operated by the Chongqing government, little is known about the spatial distribution of urban air temperature and how the local land cover influences the air temperature, especially when there are rivers running through the Chongqing urban area. To contribute to the present knowledge, a series of field measurement campaigns and numerical simulations were carried out. Two complementary types of field measurements are included: fixed weather stations and mobile transverse measurement. Numerical simulations using a house-developed program are able to predict the urban air temperature in Chongqing.
Resumo:
Confidence in projections of global-mean sea level rise (GMSLR) depends on an ability to account for GMSLR during the twentieth century. There are contributions from ocean thermal expansion, mass loss from glaciers and ice sheets, groundwater extraction, and reservoir impoundment. Progress has been made toward solving the “enigma” of twentieth-century GMSLR, which is that the observed GMSLR has previously been found to exceed the sum of estimated contributions, especially for the earlier decades. The authors propose the following: thermal expansion simulated by climate models may previously have been underestimated because of their not including volcanic forcing in their control state; the rate of glacier mass loss was larger than previously estimated and was not smaller in the first half than in the second half of the century; the Greenland ice sheet could have made a positive contribution throughout the century; and groundwater depletion and reservoir impoundment, which are of opposite sign, may have been approximately equal in magnitude. It is possible to reconstruct the time series of GMSLR from the quantified contributions, apart from a constant residual term, which is small enough to be explained as a long-term contribution from the Antarctic ice sheet. The reconstructions account for the observation that the rate of GMSLR was not much larger during the last 50 years than during the twentieth century as a whole, despite the increasing anthropogenic forcing. Semiempirical methods for projecting GMSLR depend on the existence of a relationship between global climate change and the rate of GMSLR, but the implication of the authors' closure of the budget is that such a relationship is weak or absent during the twentieth century.
Resumo:
Conservation of water demands that meridional ocean and atmosphere freshwater transports (FWT) are of equal magnitude but opposite in direction. This suggests that the atmospheric FWT and its associated latent heat (LH) transport could be thought of as a \textquotedblleft coupled ocean/atmosphere mode\textquotedblright. But what is the true nature of this coupling? Is the ocean passive or active? Here we analyze a series of simulations with a coupled ocean-atmosphere-sea ice model employing highly idealized geometries but with markedly different coupled climates and patterns of ocean circulation. Exploiting streamfunctions in specific humidity coordinates for the atmosphere and salt coordinates for the ocean to represent FWT in their respective medium, we find that atmospheric FWT/LH transport is essentially independent of the ocean state. Ocean circulation and salinity distribution adjust to achieve a return freshwater pathway demanded of them by the atmosphere. So, although ocean and atmosphere FWTs are indeed coupled by mass conservation, the ocean is a passive component acting as a reservoir of freshwater.